摘要
引入风险补偿因子,建立半参短期利率模型,使用P-样条方法估计漂移项,并证明了在合适参数的约束条件下,相应的短期利率动态过程是非负的平稳过程.实证研究结果表明考虑半参模型将增加似然函数的估计值,同时考虑风险补偿因子将进一步改善模型的拟合效果.此外具有弹性系数模型比均方根模型能够更好地刻画时间序列数据,而且也发现风险补偿因子对于漂移项非线性现象是比较显著的.
This paper presents the semi-parametric model of short-term interest rates with the risk compensation factor. We show a technique for nonparametrically estimating the drift function by using P-spline approximation. Under the appropriately parameter constraints, the interest rate dynamics process is a non-negative stationary process. Empirical results show that the likelihood function will be improved for the semi-parametric model. Fklrthermore, the model provides the better fitting results by incorporating the risk compensation. Besides, the CEV model could show the better fitting than the CIR model. Finally, there are some evidence of substantial non-linearity in the drift for the model with the risk compensation factor.
作者
江良
林鸿熙
宋丽平
JIANG Liang LIN Hongxi SONG Liping(School of Mathematics, School of Business, Putian University, Putian 351100)
出处
《系统科学与数学》
CSCD
北大核心
2016年第11期2137-2150,共14页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金项目(11471175)
福建省自然科学基金项目(2015J05012,2016J01677)
福建省教育厅项目(JAS14258)
莆田学院育苗基金项目(2014060,2014061)资助课题
关键词
风险补偿因子
短期利率模型
P-样条
半参模型
Risk compensation factor, short term interest model, P-spline, semi- parametric model.