期刊文献+

网络空间中线要素的核密度估计方法 被引量:8

A Kernel Density Estimation Method for Linear Features in Network Space
下载PDF
导出
摘要 核密度估计(KDE)方法是分析点要素或线要素空间分布模式的一种重要方法,但目前线要素核密度方法只能分析线要素在二维均质平面空间的密度分布,不能正确分析交通拥堵、交叉口排队、出租车载客等线事件在一维非均质道路网络空间中的密度分布。本文提出了一种网络空间中线要素的核密度估计方法(网络线要素KDE方法),首先确定每个线要素在网络空间上的密度分布,然后根据网络空间距离和拓扑关系确定网络空间的线要素核密度与时空分布。以出租车GPS轨迹数据中提取的"上客"线事件为例,分析出租车"上客"线事件在网络空间中的密度分布,通过与现有方法比较的试验结果表明,本文提出的方法更能准确反映路网空间中线事件的分布特征。 Kernel density estimation(KDE) is an important method for analyzing spatial distributions of point features or linear features. So far the KDE methods for linear features analyze the features; spatial distributions by producing a smooth density surface over 2D homogeneous planar space, However, the planar KDE methods are not suited for analyzing the distribution characteristics of certain kinds of linear events, such as traffic jams, queue at intersections and taxi carrying passenger events, which usually occur in inhomogeneous 1D network space. This article presents a KDE method for linear features in network space, which first confirms the density distribution of each single linear feature, then computes the density distributions of all linear features in terms of distance and topology relationship in network space. This article extracts "pick-up" linear events from taxi GPS trajectory data and analyzes their distribution patterns in network space. By comparison with existing methods, experiment results show that the proposed method is able to represent the distribution patterns of linear events in network space more accurately.
作者 唐炉亮 阚子涵 刘汇慧 孙飞 吴华意 TANG Luliang KAN Zihan LIU Huihui SUN Fei WU Huayi(Department of State Key Laboratory of Information Wuhan University, Wuhan zL30079, China School 430079, China Engineering in Surveying, Mapping and Remote Sensing, of Geodesy and Geomatics, Wuhan University, Wuhan)
出处 《测绘学报》 EI CSCD 北大核心 2017年第1期107-113,共7页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金(41671442 41571430 41271442)~~
关键词 线事件 网络空间 核密度 时空GPS轨迹 Linear events network space kernel density estimation(KDE) spatial-temporal GPS trajectory
  • 相关文献

参考文献5

二级参考文献42

  • 1唐川,朱静.GIS支持下的滇西北地区泥石流灾害评价[J].水土保持学报,2001,15(6):84-87. 被引量:26
  • 2李双成,许月卿,周巧富,王磊.中国道路网与生态系统破碎化关系统计分析[J].地理科学进展,2004,23(5):78-85. 被引量:105
  • 3匡泰,朱清新,孙跃.FCM算法用于灰度图像分割的初始化方法的研究[J].计算机应用,2006,26(4):784-786. 被引量:15
  • 4COLOMBARI A, FUSIELLO A, MUR/NO V. Segmentation and tracking of multiple video objects[J]. Pattern Recognition, 2007, 40(4): 1307-1317.
  • 5STAUFFER C, GRIMSON E. learning patterns of activity using real-time tracking[J]. IEEE Transactions on Pattern Recognition Machine Intelligence, 2000, 22(8): 747-757.
  • 6ZIVKOVIC Z. Improved adaptive Gaussian mixture model for background subtraction[A]. Proceedings of the 17th International Conference on Pattern Recognition[C]. Cambridge, United Kingdom, 2004.28-31.
  • 7SONG X H, CHEN Y, GENG J E A robust moving objects detection algorithm based on gaussian mixture model[A]. International Conference on Information Technology and Computer Science[C]. 2009. 566-569.
  • 8LOB P L, VELASTIN S A. Automatic congestion detection system for underground platforms[A]. Proceedings of International Symposium on Intelligent Multimedia, Video and Speech Processing[C]. Hong Kong, China, 2001. 158-161.
  • 9OLIVER N M, ROSARIO, PENTLAND A E A Bayesian computer vision system for modeling human interactions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 831-843.
  • 10ELGAMMAL A, DURAISWAMI R, HARWOOD D. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance [J]. Proceedings of the IEEE, 2002, 90(7): 1151-1163.

共引文献300

同被引文献141

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部