期刊文献+

基于聚类的出租车异常轨迹检测 被引量:11

Clustering-based Taxi Trajectory Outlier Detection
下载PDF
导出
摘要 出租车全球定位系统数据中蕴含城市交通和移动对象行为的宏观信息,从中可以挖掘出有价值的异常轨迹模式。将位置和几何形状、行驶时间分别作为出租车轨迹的空间与时间特征,根据特征偏离情况划分时间、空间和时空异常轨迹。从轨迹数据中提取相同起终点的轨迹集,将轨迹划分成轨迹片段,计算轨迹间的相似度并进行基于距离和密度的聚类,在空间特征上初步分离出频繁和稀疏轨迹,根据数据异常判定的kσ准则确定时间特征异常的分离阈值,对时间特征进行再次划分,最终实现出租车异常轨迹检测。实验结果表明,该方法能从异常轨迹中挖掘出个性化路线、异常停留位置和交通路段,为智能交通、物流高效规划和执行等提供参考信息。 Taxi Global Position System(GPS) data contain macro information about the behavior of urban traffic and moving object behavior,from which valuable anomalous trajectory patterns can be mined.The location,geometry and travel time are taken as the spatial and temporal characteristics of the taxi trajectory respectively.According to the deviation of the feature,the trajectory anomalies are divided into temporal,space and spatio-temporal outliers.The trajectories of the same starting and ending points are extracted from the trajectory data,and are partitioned into segments.The similarity between trajectories is calculated and clustering based on distance and density is carried out.Frequent and the sparse trajectories are preliminary separated by the spatial characteristies.Based on κσ criterion,the separation threshold of temporal anomaly is determined to realize the classification of the temporal characteristic,and finally the trajectory outlier detection of the taxi is realized.The experimental results show that the method can extract personalized route as well as abnormal parking location and traffic section from abnormal trajectories providing reference information for intelligent transportation as well as efficient logistics planning and execution.
出处 《计算机工程》 CAS CSCD 北大核心 2017年第2期16-20,共5页 Computer Engineering
基金 国家自然科学基金"空间数据流的概念漂移问题研究"(41571394)
关键词 异常轨迹检测 全球定位系统数据 轨迹聚类 时空特征 轨迹模式 trajectory outlier detection Global Position System(GPS) data trajectory clustering spatio-temporal characteristics trajectory pattern
  • 相关文献

参考文献6

二级参考文献138

  • 1陈继东,孟小峰,赖彩凤.基于道路网络的对象聚类[J].软件学报,2007,18(2):332-344. 被引量:29
  • 2Cheng Taoz Li Zhilin. A Multiscale Approach for Spatio-temporal Outlier Detection[J]. Transactions in GIS, 2006, 10(2): 253-263.
  • 3Adam N R, Vandana P J, Atluri V. Neighborhood-based Detection of Anomalies in High Dimensional Spatio-temporal Sensor Datasets[C]//Proc. of the 2004 ACM Symposium on Applied Computing Table of Contents. [S. l.]: ACM Press, 2004.
  • 4Hawkins D. Identification of Outliers[M]. [S. l.]: Chapman and Hall, 1980.
  • 5Rousseeuw P J, Leroy A M. Robust Regression and Outlier Detection[M]. New York, USA: John Wiley Publisher, 2005.
  • 6Jiang Shengyi, Li Qinghua. GLOF: A New Approach for Mining Local Outlier[C]//Proc. of the 2nd International Conference on Machine Learning and Cybernetics. Xi'an, China: [s. n.], 2003.
  • 7LEE J G, HAN J W, WHANG K Y. Trajectory clustering: a partition-and-group framework[A]. Proceedings of the 2007 ACM SIG-MOD International Conference on Management of Data[C]. Beijing, China, 2007. 593-604.
  • 8CHANG C, ZHOU B Y. MuM-granularity visualization of trajectory clusters using sub-trajectory clustering[A]. Proceedings of the 7th IEEE International Conference on Data Mining Workshops[C]. Miami, Florida, USA, 2009. 577-582.
  • 9KREVELD M V, LUO J. The definition and computation of trajectory and sub-trajectory similarity[A]. Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems[C]. Seattle, Washington, USA. 2007. 324-327.
  • 10PELEKIS N, KOPANAKIS I, MARKETOS G, et al. Similarity search in trajectory databases[A]. Proceedings of the 14th International Symposium on Temporal Representation and Reasoning[C]. Washington, DC, USA, 2007. 129-140.

共引文献193

同被引文献95

引证文献11

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部