期刊文献+

基于数据冗余的HBase合并机制研究 被引量:4

Research on HBase Compaction Mechanism Based on Data Redundancy
下载PDF
导出
摘要 HBase列式数据库的所有操作均以追加数据方式写入,导致其合并机制占用资源过多,影响系统读性能。为解决该问题,提出一种基于数据冗余的合并机制,将列族下文件删除数据占比达到设定阈值的文件进行合并,以减少无用数据在系统中的占用空间。实验结果表明,与HBase原有仅考虑文件大小、个数和时间间隔的合并机制相比,改进的合并机制可提高HBase系统查询效率以及Major合并性能。 In HBase,the operations are written to database in the form of appending data.HBase Compaction mechanisms occupy plenty of system resources,which affects read performance.To solve this problem,a mechanism based on data redundancy is proposed.By compacting the column files whose ratio of deleted data equals the threshold,the algorithm can reduce space occupation because it reduces the number of files while cleaning useless data.Experimental result indicates,compared with the original HBase Compaction mechanism,which only considers the size and number of files and time interval,the proposed Compaction mechanism can improve HBase system query efficiency and enhance HBase Major compaction capability.
出处 《计算机工程》 CAS CSCD 北大核心 2017年第2期63-67,共5页 Computer Engineering
基金 重庆市教委科学技术研究项目(KJ1400414) 重庆邮电大学博士启动基金(A2015-17) 重庆邮电大学自然科学基金(A2011-29)
关键词 列式数据库 存储 HBase合并机制 CPU利用率 读性能 column database storage HBase Compaction mechanism CPU utilization rate read performance
  • 相关文献

参考文献3

二级参考文献32

  • 1Kubiatowicz J, Bindel D, Chen Y, Czerwinski S, Eaton P, GeelsD, Gummadi R, Rhea S,Weatherspoon H,Wells C,Zhao B.OceanStore: an architecture for global-scale persistent storage.SIGARCH Comput. Archit. News 28,5 (Dec.2000),190-201.
  • 2HBase. http://hbase.apache.org/.
  • 3Chang F,Dean J, Ghemawat S, Hsieh WC. Bigtable: A distri-buted storage system for structured data. ACM Trans, onComputer Systems(TOCS) 2008,26(2).
  • 4Tom White,曾大聃,周傲英,周敏译.Hadoop权威指南.北京:清华大学出版社,2010:366~429.
  • 5Lars George.HBase:The Definitive Guide(影印版).南京:东南大学出版社,2012:315-384.
  • 6Ousterhout J,Agrawal P, Erickson D, Kozyrakis C,Leverich J,Mazi^res D,Mitra S,Narayanan A, Parulkar G, RosenblumM,Rumble SM, Stratmann E, Stutsman R. The case forRAMClouds: Scalable high-performance storage entirely inDRAM. SIGOPS Operating Systems Review, December2009,43(4): 92-105.
  • 7Dai D,Li X,Wang C, Sun MM, Zhou XH. Sedna: A memorybased key-value storage system for real time processing incloud. The 2012 International Conference on ClusterComputing Workshops(IASDS 2012) in Conjunction withIEEE Cluster* 12, September 2012: 24-28.
  • 8Zhang, Chen,De Sterck, Hans. Supporting Multi-Row Distributed Transactions with Global Snapshot Isolation Using Bare-Bones HBase[C]. Proceedings of the 2010 1 lth IEEE/ACM International Conference on Grid Computing, Grid 2010:177-184.
  • 9Li, Chongxin. Transforming Relational Database into HBase: A Case Study[C]. Proceedings of the 2010 IEEE International Conference on Software Engineering and Service Sciences, ICSESS 2010:683-687.
  • 10Konstantinou, Ioannis,Angelou, Evangelos,etal. On the Elasticity of NoSQL Databases Over Cloud Management Platforms[C]. Proceed- ings of the 2011 International Conference on Information and Knowledge Management,CIKM'11:p2385-2388.

共引文献26

同被引文献48

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部