期刊文献+

基于精确欧氏局部敏感哈希的改进协同过滤推荐算法 被引量:6

Improved Collaborative Filtering Recommendation Algorithm Based on Exact Euclidean Locality Sensitive Hashing
下载PDF
导出
摘要 针对经典协同过滤推荐算法中用户评分数据的规模大、高稀疏度以及直接进行相似度计算实时性差等问题,提出基于p-stable分布的分层精确欧氏局部敏感哈希(E2LSH)算法。利用E2LSH算法查找相似用户,在得到相似用户后使用加权平均方法对用户未评分项目进行评分预测,从而提高推荐结果的准确性。实验结果表明,与基于局部敏感哈希的协同过滤推荐算法相比,该算法具有较高的运行效率及推荐准确率。 Aiming at the large scale and high sparsity degree of user rating data and poor real-time capability of direct similarity calculation,this paper proposes a layered Exact Euclidean Locality Sensitive Hashing(E2LSH) algorithm based on p-stable distribution.It finds similar users to improve computing efficiency by using E2LSH algorithm,and uses weighted mean method to predict score for not rated items to improve the accuracy of recommendation results after getting the similar users.Experimental results show that,compared with the collaborative filtering recommendation algorithm based on Locality Sensitive Hashing(LSH),this algorithm has higher efficiency and recommendation accuracy.
作者 钟川 陈军
出处 《计算机工程》 CAS CSCD 北大核心 2017年第2期74-78,共5页 Computer Engineering
关键词 精确欧氏局部敏感哈希 相似度 排序 协同过滤 推荐系统 Exact Euclidean Locality Sensitive Hashing(E2LSH) similarity sort collaborative filtering recommendation system
  • 相关文献

参考文献6

二级参考文献67

  • 1何典,梁英.电子商务个性化推荐系统研究[J].湖南商学院学报,2005,12(4):21-22. 被引量:3
  • 2邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:147
  • 3Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 4Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 5Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 6Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 7Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 8Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 9Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 10Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.

共引文献633

同被引文献41

引证文献6

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部