期刊文献+

Delta机器人刚-柔混合位置误差建模与补偿分析 被引量:4

Error modeling and compensation analysis of Delta robot rigid-flexible hybrid position
下载PDF
导出
摘要 以Delta机器人系统为研究对象。首先,根据其机构特点,基于几何空间矢量法,建立了刚体系统误差模型。其次,根据柔性杆件弹性变形特性,基于空间有限元理论,在建立系统弹性动力学模型的基础上建立了柔体系统误差模型。然后,综合考虑两种误差模型建立了系统的刚-柔混合位置误差模型。经分析,提出了一种通过调整主动臂输入角的实际值对动平台位置误差进行补偿的方案,并利用Newton插值法阐述了寻求任意时间点处误差补偿值的算法步骤,在关节空间中对主动臂进行了基于修正梯形模式的轨迹规划。最后,利用试验算例对刚-柔混合位置误差模型与补偿方案进行了验证分析。 The Delta robot system was set as the research object. Firstly, according to the characteristics of its mechanism, the rigid body system error model established based on the geometry of space vector method. Secondly, according to the flexible rod elastic deformation characteristics, based on space finite element theory, the flexible body system error model was estab- lished on the basis of the system elastic dynamics model. Then, considering the two kinds of error model, the rigid-flexible hy- brid position error model of the system was established, a scheme of adjusting the input angle values of the driving arm to com- pensate the position error of the moving platform was proposed through the analysis. The algorithm steps of seeking any time point of error compensation value was elaborated based on Newton interpolation methoed. The trajectory planning based on mod- ified trapezoidal mode was performed on the active arm in the joint space. Finally, the experimental example was used to verify and analyze the rigid-flexible hybrid position error model and the compensation scheme.
出处 《机械设计》 CSCD 北大核心 2017年第1期52-61,共10页 Journal of Machine Design
基金 教育部中央高校基本科研业务专项基金重点资助项目(JUSRP51316B) 江南大学自主科研计划重点资助项目(JUSRP51316B)
关键词 Delta机器人 几何空间矢量法 弹性动力学 刚-柔混合位置误差模型 Newton插值法 轨迹规划 误差补偿 Delta robot geometric space vector method elastic dynamics rigid-flexible hybrid position error model Newton interpolation trajectory planning error compensation
  • 相关文献

参考文献5

二级参考文献52

  • 1杨灏泉,赵克定,吴盛林,曹健.飞行模拟器六自由度运动系统的关键技术及研究现状[J].系统仿真学报,2002,14(1):84-87. 被引量:34
  • 2丛大成,于大泳,韩俊伟.Stewart平台的运动学精度分析和误差补偿[J].工程设计学报,2006,13(3):162-165. 被引量:11
  • 3YANG Chifu,HUANG Qitao,JIANG Hongzhou,et al. PD control with gravity compensation for hydraulic 6-DOF parallel manipulator[J]. Mechanism and Machine Theory,2010,45:666-677.
  • 4DENIS G,KRISHNASWAMY S. Adaptive friction compensation for precision machine tool drive[J]. Control Engineering Practice,2004,12:1451-1464.
  • 5ABDELHAMID T. Adaptive iterative learning control for robot manipulators[J]. Automatica,2004,40:1195-1203.
  • 6BESNARD S, KHALIL W. Calibration of parallel robot using two inclinometer[J]. Proceedings of IEEE International Conference on Robotics & Automation,1999:1758-1763.
  • 7TIMO Ropponen, TATSUO Arai. Accuracy analysis of a modified steward platform manipulator[J]. Proceedings of IEEE International Conference on Robotics & Automation, 1995: 521-526.
  • 8TANG Xiao-qiang, LI Tie-min, YIN Wen-sheng,et al. Accuracy analysis and calibration of gantry hybrid machine tool[J]. Qinghua Science and Technology, 2003, 8(6): 702-707.
  • 9ZHUANG H, LIU L. Self-calibration of a class of parallel robots [J]. Proceedings of IEEE International Conference on Robotics & Automation, 1996: 994-999.
  • 10Tsai Meng-Shiun,Yuan Wei-Hsiang. Dynamic modeling and decentralized control of a 3 PRS parallel mechanism based on constrained robotic analysis [J]. Journal of Intelligent and Robotic Systems : Theory and Applications, 2011,63 (3-4) :525-545.

共引文献44

同被引文献25

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部