摘要
针对滚动轴承早期微弱故障常被强烈的背景噪声湮没,造成故障特征提取困难的特点,提出了基于相关峭度准则EEMD及改进形态滤波的轴承故障诊断方法。首先利用EEMD将轴承故障信号分解成有限个IMF分量,然后采用相关峭度准则选取分量并重构,再利用基于相关峭度准则的改进形态滤波对重构信号进行滤波解调,最后将滤波后的信号进行Hilbert包络谱分析,找出故障特征进行识别。试验表明:该方法能有效抑制噪声,特征提取效果更加明显,适用于轴承故障的精确诊断。
The early weak fault of rolling bearing is often covered by the strong background noise, which is difficult to extract fault information ,so a fault diagnosis method using EEMD and improved morphological filter based on correlated kurtosis is proposed. First, the bearing fault signal is decomposed by EEMD, according to correlated kurtosis choose the IMF components, then the morphological filter based on correlated kurtosis is used to filter the reconstructed signal. Finally, the filtered signal is analyzed by the Hilbert envelope spectrum, finding the fault features to identify. Test shows that the proposed method can effectively eliminate the noise and the effect of feature extraction is more obvious, it is suitable for the fault diagnosis of rolling bearing.
出处
《轴承》
北大核心
2017年第2期55-59,共5页
Bearing
基金
国家自然科学基金项目(11227201
11472179
U1534204
11572206
11302137
11172182
11372199)
河北省自然科学基金项目(A2015210005)
河北省教育厅项目(YQ2014028)
关键词
滚动轴承
故障诊断
EEMD
相关峭度
形态滤波
rolling bearing
fault diagnosis
EEMD
correlated kurtosis
morphological filter