期刊文献+

左偏长尾状态空间SV-MG模型的参数估计

Parameters Estimates and Empirical Study of Left-skewness and Long-tailed SV-MG Model Based on Its State Space
下载PDF
导出
摘要 针对SV模型转换为线性状态空间形式之后带来的非高斯对数卡方误差,文章以高斯混合分布近似具有左偏长尾性质的对数卡方分布,得到状态空间SV-MG(SV with Mixture-of-Guass)模型。结合MCMC方法和EM算法估计SV模型参数和高斯混合参数,并利用近似滤波(AMF)算法实现SV-MG模型的样本外预测。据此对沪深股市进行了实证研究。 First, a Mixture-of-Gauss distribution approximate logarithmic chi-square distribution with left-skewness and long-tailed in this paper, for the SV model transform into a linear state-space form after bringing the non-Gaussian logarithmic chi-square error. And we get the state-space SV-MG (SV with Mixture-of-Gauss) model. Then, the paper combined with MCMC method and EM algorithm to estimate SV model parameters and Gaussian mixture distribution parameters. And we using the ap- proximate filter (AMF) algorithm to realize the out-of-sample forecasting of SV-MG models. We conduct an empirical study on shanghai and shenzheng stock Maekets.
出处 《统计与决策》 CSSCI 北大核心 2017年第3期10-13,共4页 Statistics & Decision
基金 国家自然科学基金资助项目(11471060) 国家社会科学基金资助项目(10BJL020)
关键词 状态空间 高斯混合 左偏长尾 EM算法 State space Mixture-of-Normal Left-skewness and long-tailed EM algorithm
  • 相关文献

参考文献2

二级参考文献5

  • 1李汉东.多变量时间序列波动持续性研究[M].天津:天津大学,2000..
  • 2Gourieroux C, Monfort A. Likelihood ratio statistic[J]. Journal of Econometrics, 1994, 23: 56-78.
  • 3Durbin J, Koopman S J. Monte Carlo maximum likelihood estimation for non-Gaussian state space models[J]. Biometrica, 1997,84: 669-684.
  • 4Ruiz E. Quasi-maximum likelihood estimation of stochastic volatility models[ J]. Journal of Econometrics, 1994, 63: 289-306.
  • 5Engle R F, Bollerslev T. Modeling the persistence of conditional variance [J]. Econometric Review, 1986, 5: 1-50.

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部