摘要
针对SV模型转换为线性状态空间形式之后带来的非高斯对数卡方误差,文章以高斯混合分布近似具有左偏长尾性质的对数卡方分布,得到状态空间SV-MG(SV with Mixture-of-Guass)模型。结合MCMC方法和EM算法估计SV模型参数和高斯混合参数,并利用近似滤波(AMF)算法实现SV-MG模型的样本外预测。据此对沪深股市进行了实证研究。
First, a Mixture-of-Gauss distribution approximate logarithmic chi-square distribution with left-skewness and long-tailed in this paper, for the SV model transform into a linear state-space form after bringing the non-Gaussian logarithmic chi-square error. And we get the state-space SV-MG (SV with Mixture-of-Gauss) model. Then, the paper combined with MCMC method and EM algorithm to estimate SV model parameters and Gaussian mixture distribution parameters. And we using the ap- proximate filter (AMF) algorithm to realize the out-of-sample forecasting of SV-MG models. We conduct an empirical study on shanghai and shenzheng stock Maekets.
出处
《统计与决策》
CSSCI
北大核心
2017年第3期10-13,共4页
Statistics & Decision
基金
国家自然科学基金资助项目(11471060)
国家社会科学基金资助项目(10BJL020)
关键词
状态空间
高斯混合
左偏长尾
EM算法
State space
Mixture-of-Normal
Left-skewness and long-tailed
EM algorithm