期刊文献+

Protective Effects of Calpain Inhibition on Neurovascular Unit Injury through Downregulating Nuclear Factor-KB- related Inflammation during Traumatic Brain Injury in Mice 被引量:4

Protective Effects of Calpain Inhibition on Neurovascular Unit Injury through Downregulating Nuclear Factor-KB- related Inflammation during Traumatic Brain Injury in Mice
原文传递
导出
摘要 Background: In addition to neurons, all components of the neurovascular unit (NVU), such as glial, endothelial, and basal membranes, are destroyed during traumatic brain injury (TBI). Previous studies have shown that excessive stimulation ofcalpain is crucial for cerebral injury after traumatic insult. The objective of this study was to investigate whether calpain activation participated in NVU disruption and edema formation in a mouse model of controlled cortical impact (CCI). Methods: One hundred and eight mice were divided into three groups: the sham group, the control group, and the MDL28170 group. MDL28170 (20 mg/kg), an efficient calpain inhibitor, was administered intraperitoneally at 5 rain, 3 h, and 6 h after experimental CCI. We then measured neurobehavioral deficits, calpain activity, inflammatory mediator levels, blood-brain barrier (BBB) disruption, and NVU deficits using electron microscopy and histopathological analysis at 6 h and 24 h after CCI. Results: The MDL28170 treatment significantly reduced the extent of both cerebral contusion (MDL28170 vs. vehicle group, 16.90 ± 1.01 mm3 and 17.20±1.17 mm3 vs. 9.30 ± 1.05 mm^3 and 9.90 ± 1.17 mm3, both P 〈 0.001 ) and edema (M DL28170 vs. vehicle group, 80.76 ± 1.25% and 82.00 ± 1.84% vs. 82.55 ± 1.32% and 83.64 ± 1.25%, both P 〈 0.05), improved neurological scores (MDL28170 vs. vehicle group, 7.50 ±0.45 and 6.33 ±0.38 vs. 12.33 ± 0.48 and 11.67±0.48, both P 〈 0.001), and attenuated NVU damage resulting (including tight junction (TJ), basement membrane, BBB, and neuron) from CCI at 6 h and 24 h. Moreover, MDL28170 markedly downregulated nuclear factor-κB-related inflammation (tumor necrosis factor-α [TNF-α]: MDL28170 vs. vehicle group, 1.15 ± 0.07 and 1.62± 0.08 vs. 1.59±0.10 and 2.18± 0.10, both P 〈 0.001 : inducible nitric oxide synthase: M DL28170 vs. vehicle group, 4.51± 0.23 vs. 6.23± 0.12, P 〈 0.001 at 24 h; intracellular adhesion molecule- I : MDL28170 vs. vehicle group, 1.45± 0.13 vs. 1.70 ± 0.12, P 〈 0.01 at 24 h) and lessened both myeloperoxidase activity (MDL28170 vs. vehicle group, 0.016± 0.001 and 0.016± 0.001 vs. 0.024± 0.001 and 0.023 ± 0.001, P 〈 0.001 and 0.01, respectively) and matrix metalloproteinase-9 (MMP-9) levels (MDL28170 vs. vehicle group, 0.87±0.13 and 1.10 ± 0.10 vs. 1.17 ± 0.13 and 1.25 ± 0.12, P 〈 0.001 and 0±05, respectively) at 6 h and 24 h after CCI. Conclusions: These findings demonstrate that MDL28170 can protect the structure of the NVU by inhibiting the inflammatory cascade, reducing the expression of MMP-9, and supporting the integrity of TJ during acute TBI. Background: In addition to neurons, all components of the neurovascular unit (NVU), such as glial, endothelial, and basal membranes, are destroyed during traumatic brain injury (TBI). Previous studies have shown that excessive stimulation ofcalpain is crucial for cerebral injury after traumatic insult. The objective of this study was to investigate whether calpain activation participated in NVU disruption and edema formation in a mouse model of controlled cortical impact (CCI). Methods: One hundred and eight mice were divided into three groups: the sham group, the control group, and the MDL28170 group. MDL28170 (20 mg/kg), an efficient calpain inhibitor, was administered intraperitoneally at 5 rain, 3 h, and 6 h after experimental CCI. We then measured neurobehavioral deficits, calpain activity, inflammatory mediator levels, blood-brain barrier (BBB) disruption, and NVU deficits using electron microscopy and histopathological analysis at 6 h and 24 h after CCI. Results: The MDL28170 treatment significantly reduced the extent of both cerebral contusion (MDL28170 vs. vehicle group, 16.90 ± 1.01 mm3 and 17.20±1.17 mm3 vs. 9.30 ± 1.05 mm^3 and 9.90 ± 1.17 mm3, both P 〈 0.001 ) and edema (M DL28170 vs. vehicle group, 80.76 ± 1.25% and 82.00 ± 1.84% vs. 82.55 ± 1.32% and 83.64 ± 1.25%, both P 〈 0.05), improved neurological scores (MDL28170 vs. vehicle group, 7.50 ±0.45 and 6.33 ±0.38 vs. 12.33 ± 0.48 and 11.67±0.48, both P 〈 0.001), and attenuated NVU damage resulting (including tight junction (TJ), basement membrane, BBB, and neuron) from CCI at 6 h and 24 h. Moreover, MDL28170 markedly downregulated nuclear factor-κB-related inflammation (tumor necrosis factor-α [TNF-α]: MDL28170 vs. vehicle group, 1.15 ± 0.07 and 1.62± 0.08 vs. 1.59±0.10 and 2.18± 0.10, both P 〈 0.001 : inducible nitric oxide synthase: M DL28170 vs. vehicle group, 4.51± 0.23 vs. 6.23± 0.12, P 〈 0.001 at 24 h; intracellular adhesion molecule- I : MDL28170 vs. vehicle group, 1.45± 0.13 vs. 1.70 ± 0.12, P 〈 0.01 at 24 h) and lessened both myeloperoxidase activity (MDL28170 vs. vehicle group, 0.016± 0.001 and 0.016± 0.001 vs. 0.024± 0.001 and 0.023 ± 0.001, P 〈 0.001 and 0.01, respectively) and matrix metalloproteinase-9 (MMP-9) levels (MDL28170 vs. vehicle group, 0.87±0.13 and 1.10 ± 0.10 vs. 1.17 ± 0.13 and 1.25 ± 0.12, P 〈 0.001 and 0±05, respectively) at 6 h and 24 h after CCI. Conclusions: These findings demonstrate that MDL28170 can protect the structure of the NVU by inhibiting the inflammatory cascade, reducing the expression of MMP-9, and supporting the integrity of TJ during acute TBI.
出处 《Chinese Medical Journal》 SCIE CAS CSCD 2017年第2期187-198,共12页 中华医学杂志(英文版)
关键词 CALPAIN Inflammation: Neurovascular Unit: Nuclear Factor-κB Traumatic Brain Injury Calpain Inflammation: Neurovascular Unit: Nuclear Factor-κB Traumatic Brain Injury
  • 相关文献

同被引文献28

引证文献4

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部