期刊文献+

联合局部和全局稀疏表示的磁共振图像重建方法 被引量:6

MR image reconstruction by combining local and global sparse representations
下载PDF
导出
摘要 针对在压缩传感中独立使用全局或局部稀疏字典所分别导致的图像细节或整体图像结构信息的丢失,提出了一种联合利用局部和全局稀疏约束来捕捉磁共振图像细节和整体结构信息的磁共振图像重建算法。该算法首先从特定的磁共振图像中训练出稀疏字典,然后利用该字典进行局部稀疏编码。其次,利用预定义的全局字典来加强磁共振图像的全局稀疏性。最后,在局部和全局稀疏的共同约束下,利用非线性共轭梯度算法来对重建模型进行求解。整个重建过程可以重复迭代以逐步改善重建质量。实验结果表明:当下采样因子达到10时,相比于字典学习算法(dictionary learning MRI,DLMRI),提出的算法在重建质量上可以提高1-6dB。 The compressed-sensing-based methods use the global or the local sparse dictionaries separately,which respectively results in the loss of image details or overall structures of MR(magnetic resonance)images.In order to solve this problem,a novel imaging algorithm combining both local and global sparse constraints was proposed to capture details and overall structures of MR images.Firstly,a spare dictionary was trained from specific MR images,and then the local sparse representations were obtained via the dictionary.Secondly,traditional analytical dictionaries were used to promote the global sparse structures of MR images.Finally,the reconstruction was solved by using a nonlinear conjugate gradient with the known local and global sparse constraints.This procedure was repeated iteratively to improve the quality of reconstruction.And experimental results demonstrate that compared with the dictionary learning magnetic resonance imaging method(dictionary learning MRI,DLMRI),the proposed algorithm can improve the image reconstruction by 1-6dB when the reduction factor is up to 10.
作者 葛永新 林梦然 洪明坚 GE Yongxin LIN Mengran HONG Mingjian(School of Software Engineering, Chongqing University, Chongqing 400044, P.R.Chin)
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第1期93-102,共10页 Journal of Chongqing University
基金 国家自然科学基金青年基金(61402062) 中央高校基本科研业务费专项基金(CDJZR12090003) 重庆市前沿与应用基础研究资助项目(CSTC2015JCYJA40037 CSTC2013JCYJA40038)~~
关键词 压缩感知 字典学习 局部和全局稀疏 磁共振成像 compressed sensing(CS) dictionary leaning local and global sparse magnetic resonance imaging(MRI)
  • 相关文献

参考文献4

二级参考文献90

  • 1van den BERG E,FRIEDLANDER M P.In pursuit of a root[EB/OL].[2011-03-22].http://www.optimizationonline.org/DBFILE/2007/06/1708.pdf.
  • 2JOSHUA T,ANMANDO M,ERIC B.Sparse MRI reconstruction via multiscale 10-continuation[C]//SSP '07:IEEE/SP 14th Workshop on Statistical Signal Processing.2007:176-180.
  • 3DONOHO D L,TSAIG Y.Extensions of compressed sensing[J].Signal Processing,2006,86(3):533-548.
  • 4TIBSHIRANI R.Regression shrinkage and selection via the lasso[J].Journal of the Royal Statistical Society:Series B,1996,58(1):267-288.
  • 5FIGUEIREDO M A T,NOWAK R D,WRIGHT S J.Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems[J].Journal of Selected Topics in Signal Processing:Special Issue on Convex Optimization Methods for Signal Processing,2007,1 (4):586-598.
  • 6BIOUCAS-DIAS J M,FIGUEIREDO M A T,OLIVEIRA J P.Total variation-based image deconvolution:A majorization-minimization approach[C]//ICASSP 2006:2006 IEEE International Conference on Acoustics,Speech and Signal Processing.Piscataway:IEEE,2006,2:278-281.
  • 7LUSTIG M,DONOHO D,PAULY J M.Sparse MRI:The application of compressed sensing for rapid MR imaging[J].Magnetic Resonance in Medicine,2007,58(6):1182-1195.
  • 8CHEN S S,DONOHO D L,SAUNDERS M A.Atomic decomposition by basis pursuit[J].SIAM Review,2001,43(1):129-159.
  • 9XUEFENG,LIU QUAN-SHENG,FAN WEI-HONG.Iterative image restoration using a non-local regularization function and a local regularization operator[C]// ICPR'06:18th International Conference on Pattern Recognition.Washington,DC:IEEE Computer Society,2006,3:766-769.
  • 10L.Ballesteros,W.B.Croft,Resolving Ambiguity for Cross-Language Retrieval[A],Proceedings of ACM SIGIR[C],1998,64-71.

共引文献33

同被引文献45

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部