期刊文献+

基于差分进化生物地理学优化的多层感知器训练方法 被引量:4

Multi-layer perceptron using hybrid differential evolution and biogeography-based optimization
下载PDF
导出
摘要 针对生物地理学优化训练多层感知器存在的早熟收敛以及初始化灵敏等问题,提出一种基于差分进化生物地理学优化的多层感知器训练方法。将生物地理学优化(biogeography-based optimization,BBO)与差分进化(differential evolution,DE)算法相结合,形成改进的混合DE_BBO算法;采用改进的DE_BBO来训练多层感知器(multi-layer perceptron,MLP),并应用于虹膜、乳腺癌、输血、钞票验证四类数据分类。与BBO、PSO、GA、ACO、ES、PBIL六种主流启发式算法的实验结果进行比较表明,DE_BBO_MLP算法在分类精度和收敛速度等方面优于已有方法。 The problems of premature convergence and initialization-sensitive are often experiencing when train the multi-layer perceptron using the biogeography-based optimization. This paper proposed a novel multi-layer perceptron training method using hybrid differential evolution and biogeography-based optimization. This paper introduced the differential evolution to the biogeography-based optimization to construct the hybrid DE_BBO algorithm and then used the hybrid DE_BBO algorithm for training MLPs. In order to investigate the efficiencies of DE_ BBO in training MLPs,this paper employed four classification datasets,including the Iris dataset,the breast cancer dataset,the blood transfusion datasets and the banknote authentication dataset. Comparing with six well-known heuristic algorithms,including BBO,PSO,GA,ACO,ES,and PBIL in a statistically significant way,the experimental results show that training MLPs using hybrid DE_BBO is significantly better than the current heuristic learning algorithms in terms of convergence speed and convergence accuracy.
出处 《计算机应用研究》 CSCD 北大核心 2017年第3期693-696,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61105066) 中央高校基本科研业务费专项资金资助项目(JB141305)
关键词 生物地理学优化 差分进化 多层感知器 数据分类 biogeography-based optimization differential evolution multi-layer perceptron data classification
  • 相关文献

参考文献6

二级参考文献64

  • 1郑肇葆,黄桂兰.航空影像纹理分类的最小二乘法和问题的分析[J].测绘学报,1996,25(2):121-126. 被引量:13
  • 2郑肇葆.基于蚁群行为仿真的影像分割[J].武汉大学学报(信息科学版),2005,30(11):945-949. 被引量:10
  • 3吴亮红,王耀南,周少武,袁小芳.采用非固定多段映射罚函数的非线性约束优化差分进化算法[J].系统工程理论与实践,2007,27(3):128-133. 被引量:27
  • 4Simon D. Biogeography-Based Optimigation [J].IEEE Trans on Evolutionary Computation, 2008,12 (6) :702-713.
  • 5Hamid R. Tizhoosh Opposition Based Learning:A New Scheme for Machine Intelligence [OL]. http ://pami. uwaterloo.ca/tizhoosh/, 2005.
  • 6Grgeger M, Simon D, Du Dawei. Oppositional Bio geography-Based Optimigation [OL]. http://academic.esuohio.edu/simond/bbo, 2009.
  • 7SIMON D. Biogeography-hased optimization[ J]. IEEE Transactions on Evolutionary Computation, 2008, 12(6) : 702 - 713.
  • 8SIMON D. A probabilistic analysis of a simplified biogeographybased optimization algorithm[ J]. Evolutionary Computation, 2011, 19(2) : 167 - 185.
  • 9SIMON D. Matlab code of BBO[ EB/OL]. [2008 - 05 - 08]. http://academic, esuohio, edu/simond/bbo/.
  • 10DU DAWEI, SIMON D, ERGEZER M. Biogeography-based optimization combined with evolutionary strategy and immigration refusal [ C]//IEEE International Conference on Systems, Man and Cybernetics. Washington, DC: IEEE Computer Society, 2009: 997-1002.

共引文献69

同被引文献29

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部