摘要
强震作用下钢筋混凝土柱往往表现出明显的强度退化、刚度退化、捏拢效应以及非对称性等滞回特性,而传统的恢复力模型难以合理描述上述滞回特性。该文基于Bouc-Wen-Baber-Noori(BWBN)模型,通过在滞回位移与相对侧向位移的微分函数关系中引入描述非对称滞回性质的形状控制参数,建立了一种能够有效考虑强度退化、刚度退化、捏拢效应以及非对称滞回特性的改进BWBN模型,进而结合微分进化算法提出了非对称BWBN模型参数的识别技术,并利用钢筋混凝土柱的拟静力往复加载试验数据,对比验证了该模型的有效性。
Subjected to severe excitations generated by strong ground motions, a reinforced concrete (RC) column usually exhibits the behavior of strength degradation, stiffness deterioration, pinching effect, and asymmetric hysteresis. However, the traditional restoring force models cannot rationally describe the above hysteretic behavior. An improved asymmetric Bouc-Wen-Baber-Noori (BWBN) model was developed, taking into account the strength degradation, stiffness deterioration, pinching effect and asymmetric hysteretic behavior, by introducing an asymmetric shape parameter into the differential function between hysteretic displacements and relative lateral displacements. Meanwhile, an efficient method was proposed to identify the parameters of the asymmetric BWBN model, based on the differential evolution (DE) algorithm. The efficiency and accuracy of the proposed model were validated by comparing with the experimental data of pseudo-static loading test of RC columns.
出处
《工程力学》
EI
CSCD
北大核心
2017年第2期153-161,共9页
Engineering Mechanics
基金
国家自然科学基金项目(51168003,51368006)
广西自然科学基金重大项目(2012GXNSFEA053002)
广西自然科学青年基金项目(2013GXNSFBA019237)
广西高校科学技术研究项目(2013YB009)
关键词
钢筋混凝土柱
非弹性
恢复力模型
非对称
参数识别
reinforced concrete column
inelastic
restoring force model
asymmetric
parameter identification