期刊文献+

一种改进的Slope One协同过滤推荐算法 被引量:4

An Improved Slope One Collaborative Filtering Recommendation Algorithm
下载PDF
导出
摘要 商品属性和用户浏览商品的记录是进行商品推送的关键。对商品属性进行了定义并给出了针对商品互动(行为)信息的相似度计算公式,进而提出了一种商品推荐的改进slope one协同过滤算法。在该算法中提出基于商品名称的二进制串进行商品间名称型属性海明距离的度量依据,并基于某电子商务平台站点提供的商品信息、客户信息、客户对商品的浏览记录以及商品的稀疏度等信息,验证了所提算法的有效性。通过与基本slope one算法和加权slope one算法的比较,证明了算法的合理性。 The keys to push the goods are goods attributes and the record that users browse the commodity. This paper gives the definition of product attributes and the similarity calculation formulation based on the goods interaction (behavior) information, and then an improved slope one recommendation collaborative filtering algorithm is put forward. In the algorithm, the binary string based on the commodity name is proposed to measure the hamming distance based on the commodity name attribute. The effectiveness of the proposed algorithm is verified by the commodity information, customer information, customers for goods browsing records and commodity sparse information, which are provided by an e-commerce site platform. By comparing with the basic slope one algorithm and the weighted slope one algorithm, the rationality of the algorithm is proved.
出处 《控制工程》 CSCD 北大核心 2017年第2期257-262,共6页 Control Engineering of China
基金 国家自然科学基金(61603262 61403071) 中国博士后科学基金特别资助项目(2015T80798) 中国博士后科学基金面上项目(2014M552040) 辽宁省教育厅科技项目(L2015372) 沈阳工学院博士启动基金(BS201503)
关键词 商品相似度 SLOPE ONE 协同过滤推荐 电子商务平台 Commodity similarity slope one collaborative filtering recommendation e-commerce platform
  • 相关文献

参考文献7

二级参考文献66

  • 1周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 2邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 3MitchellTM著 曾华军 张银奎译.机器学习[M].北京:机械工业出版社,2003..
  • 4Chen J, Geyer W, Dugan C, Muller M, Guy I. Make new friends, but keep the old: Recommending people on social networking sites//Proceedings of the 27th International Conference on Human Factors in Computing Systems. New York, NY, USA, 2009 201-210.
  • 5Sarwar B M, Karypis G, Konstan J A, Riedl John. Analysis of recommendation algorithms for e-commerce//Proceedings of the 2nd ACM Conference on Electronic Commerce (EC-00). Minneapolis, MN, USA, 2000:158 167.
  • 6Linden Greg, Smith Brent, York Jeremy, Amazon. com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 2003, 7(1): 76-80.
  • 7Pazzani M J, Billsus D. Content based recommendation systems//Brusilovsky P et al eds. The Adaptive Web. Springer Verlag, 2007:325 341.
  • 8Mislove Alan, Marcon Massimiliano, Gummadi Krishna P, Druschel Peter, Bhattacharjee Bobby. Measurement and analysis of online social networks//Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement. San Diego, CA, USA, 2007:29 /i2.
  • 9Piao Scott, Whittle Jon. A feasibility study on extracting twitter users' interests using NLP tools for serendipitous connections//Proceedings of the 3rd IEEE International Conference on Social Computing (SocialCom 2011). Boston, MA, 2011= 910 915.
  • 10Sakaguchi T, Akaho Y, Takagi T, Shintani T. Recommen dations in twitter using conceptual {uzzy sets//Proceedings of the 2010 Annual Meeting of the North American Fuzzy lnfor mation Processing Society (NAFIPS). Toronto, Canada, 2010:1 6.

共引文献161

同被引文献36

引证文献4

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部