期刊文献+

基于WSN和ANP的边坡预测监控系统设计 被引量:1

Design of Slope Disaster Prediction and Monitoring System Based on Wireless Sensor Network and ANP
下载PDF
导出
摘要 针对滑坡泥石流灾害的预测与监控问题,提出一种基于无线传感器网络(WSN)和网络分析法(ANP)模型的边坡灾害预测和监控系统(WADPMS)。首先,通过WSN采集检测环境的各种致灾因子数据并传输给处理器。然后,利用ANP构建预测模型,根据致灾因子数据预测灾害发生概率。此外,系统可将压缩图像和灾害信息通过无线网络发送到各种移动终端,提高灾害预防和救灾效率。实验结果表明,相比BP神经网络和多元统计分析法,提出的预测模型获得了更高的预测准确率。 For the issues that the prediction and monitoring of landslide and debris flow disasters, a slope disaster prediction and monitoring system (WADPMS) based on wireless sensor network (WSN) and analytic network process (ANP)system is proposed. First, the WSNis used to collect the data of the environmental hazard factors and transmit the data to the processor. Then, the ANP is used to build the prediction model, so as to predict the occurrence probability of disasters according to the hazard factor data. In addition, in order to improve the efficiency of disaster prevention and relief, the system sends the compressed images and disaster information to a variety of mobile terminals by the wireless network. The experimental results show that the proposed prediction model can obtain higher prediction accuracy compared with the BP neural network and multivariate statistical analysis method.
出处 《控制工程》 CSCD 北大核心 2017年第2期355-360,共6页 Control Engineering of China
关键词 实时灾害监控 无线传感器网络(WSN) 网络分析法(ANP) 边坡灾害预测 地理信息系统(GIS) Real-time disaster monitoring wireless sensor network analytic network process slope disaster prediction geographical information system (GIS)
  • 相关文献

参考文献4

二级参考文献30

  • 1陈丹,郑增威,李际军.无线传感器网络研究综述[J].计算机测量与控制,2004,12(8):701-704. 被引量:100
  • 2金江军,潘懋,邬伦,屈红刚,丛威青.深圳市地质灾害评价与预警系统研究[J].测绘科学,2007,32(2):125-127. 被引量:9
  • 3中国地质大学(武汉),武汉地大信息科技发展有限公司.iTelluroGlobeEngineSDK使用说明0.3[z].2009.
  • 4Sugeno M.Theory of fuzzy integrals and its application[D].Tokyo:Tokyo Institute of Technology,1974.
  • 5Grabisch M.A new algorithm for identifying fuzzy measures and its application to pattern recognition[C] //International Joint Conference of 4th IEEE International Conference on Fuzzy Systems and the 2nd International Fuzzy Engineering Symposium,Yokohama,Japan,1995:145-150.
  • 6Kojadinovic I.Minimum variance capacity identification[J].European Journal of Operational Research,2007,177(1):498-514.
  • 7Combarro E F,Miranda P.Identification of fuzzy measures from sample data with genetic algorithms[J].Com-puters & Operations Research,2006,33:3046-3066.
  • 8Chen Y W.Implementing an analytical hierarchy process by fuzzy integral[J].International Journal of Fuzzy Systems,2001,3(3):493-502.
  • 9Takahagi E.On Identification methods of λ-fuzzy measures using weights and λ[J].Japanese Journal of Fuzzy Sets and Systems,2000,12(5):665-676.
  • 10Marichal J L,Roubens M.Dependence between criteria and multiple criteria decision aid[C] //2nd International Workshop on Preferences and Decisions,Trento,Italy,1998:69-75.

共引文献36

同被引文献11

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部