期刊文献+

一类基于群智能优化算法的谐波估计方法 被引量:4

A Class of Harmonic Estimation Method Based on Swarm Intelligence Optimization Algorithm
下载PDF
导出
摘要 准确地估计谐波是抑制电网中谐波的先决条件,提出了基于群智能优化算法与最小二乘法相结合的谐波估计方法,该类方法首先应用群智能优化算法中的粒子群算法、差分进化算法、人工蜂群算法、遗传算法及细菌觅食算法分别对谐波的相位进行估计,然后由最小二乘法完成对谐波幅值的估计;最后将该类方法应用在测试信号谐波估计中,仿真结果表明了这些方法可以有效的对谐波进行估计;此外,还对比分析这五种群智能优化算法与FFT谐波估计的运算时间,收敛状况以及估计误差,比较的结果表明了该方法比传统的方法具有更好的效果。 Accurate harmonic estimation is the prerequisite to restrain the harmonic in the power grid, the paper proposes the harmonic estimation method which combines the swarm intelligence optimization algorithm with the least square method. This method adopts the particle swarm algorithm, differential evolution algorithm, artificial bee colony algorithm, genetic algorithm and bacterial foraging algorithm of swarm intelligence optimization algorithm to estimate the phase of harmonics respectively, and then adopts the least square method to estimate the harmonic amplitude. Finally, the paper applies this method into the test signal harmonic estimation, and its estimation results show that this method can effectively estimate the harmonic; In addition, the paper analyzes the operation time, convergence condition and estimation error of the five kinds of intelligent optimization algorithm and FFT harmonic estimation by contrast, and the comparison results show that the method in this paper has better effects than the traditional method.
出处 《控制工程》 CSCD 北大核心 2017年第2期467-474,共8页 Control Engineering of China
基金 国家自然科学基金(51309116) 农业部渔业装备与工程技术重点实验室基金(2016002) 福建省自然科学基金(2016J01736) 福建省教育厅(杰青)基金(JA14169) 福建省大学生创新创业训练计划基金(201610390067)
关键词 谐波估计 电能质量 群智能优化算法 最小二乘 快速傅里叶转换 Harmonic estimation power quality swarm intelligence ootimization: least souare. FFT
  • 相关文献

参考文献3

二级参考文献59

  • 1曾凯,李唐.宽带与超宽带室内无线信道特性比较与分析[J].西安邮电学院学报,2004,9(3):19-22. 被引量:1
  • 2张士兵,张力军.超宽带信道建模与仿真[J].南京邮电学院学报(自然科学版),2005,25(3):50-53. 被引量:13
  • 3赵君喜,陈桂琴.超宽带无线通信正交脉冲波形的正交化设计[J].南京邮电大学学报(自然科学版),2006,26(2):39-42. 被引量:5
  • 4周育辉,梅振东.超宽带及其在无线个域网中的应用[J].现代电子技术,2006,29(15):18-20. 被引量:2
  • 5Kim D H,Cho C H.Bacterial foraging based neural network fuzzy learning[C] //IICAI 2005,2005:2030-2036.
  • 6Acharya D P,Panda G,Mishra S,et al.Bacteria foraging based independent component analysis[C] /International Conference on Computational Intelligonce and Multimedia Applications.Los Alamitos:IEEE Press,2007:527-531.
  • 7Dasgupta S,Biswas A,Das S,et al.Automatic circle detection on images with an adaptive bacterial foraging algorithmiC] //2008 Genetic and Evolutionary Computation Conference(GECCO 2008),2008:1695-1696.
  • 8Chen H,Zhu Y,Hu K.Multi-colony bacteria foraging optimization with cell-to-cell communication for RFID network planning[J].Applied Soft Computing,2010,10:539-547.
  • 9Passino K M.Biomimicry of bacterial foraging for distributed optimization and control[J].IEEE Control Systems Magazine,2002,22:52-67.
  • 10Berg H.Motile behavior of bacteria[J].Phys Today,2000,53(1):24-29.

共引文献82

同被引文献30

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部