摘要
针对多参数流式细胞数据分析过程复杂、自动化程度不高、要求操作者具有一定专业背景等问题,本文提出了一种基于核主成分分析算法(KPCA)进行多参数流式细胞数据分群的方法。利用KPCA对多参数流式细胞数据进行非线性变换,降低数据的维度,得到主成分特征变量下的散点图分群结果,并使用改进的Kmeans聚类算法实现不同亚群的自动设门。以人体外周血淋巴细胞样本检测结果为实验数据,分别对其进行传统分群、主成分分析(PCA)分群、KPCA分群处理,并对特征参数的选取进行了探索。结果表明,KPCA方法能够较好地应用于多参数流式细胞数据分析中,与传统细胞分群方法相比,该方法无需操作者具备专业知识,即可实现快速准确的自动分群,能够提高流式细胞仪临床诊断分析的效率。
The process of multi-parametric flow cytometry data analysis is complicate and time-consuming, which requires well-trained professionals to operate on. To overcome this limitation, a method for multi-parameter flow cytometry data processing based on kernel principal component analysis (KPCA) was proposed in this paper. The dimensionality of the data was reduced by nonlinear transform. After the new characteristic variables were obtained, automatical clustering can be achieved using improved K-means algorithm. Experimental data of peripheral blood lymphocyte were processed using the principal component analysis (PCA)-based method and KPCA-based method and then the influence of different feature parameter selections was explored. The results indicate that the KPCA can be successfully applied in the multi-parameter flow cytometry data analysis for efficient and accurate cell clustering, which can improve the efficiency of flow cytometry in clinical diagnosis analysis.
作者
马闪闪
董明利
张帆
潘志康
祝连庆
MA Shanshan DONG Mingli ZHANG Fan PAN Zhikang ZHU Lianqing(Beijing Key Laboratory for Optoelectronics Measurement Technology, Beijing Information Science and Technology University, Beijing 100192, P.R.China)
出处
《生物医学工程学杂志》
EI
CAS
CSCD
北大核心
2017年第1期115-122,共8页
Journal of Biomedical Engineering
基金
教育部长江学者和创新团队发展计划资助项目(IRT1212)
国家重大科学仪器设备开发专项基金资助项目(2011YQ030134)
北京市市属高等学校创新团队建设提升计划资助项目(IDHT20130518)
关键词
核主成分分析
主成分分析法
流式细胞术
细胞分群
kernel principal component analysis
principal component analysis
flow cytometry
cell clustering