期刊文献+

基于模糊神经网络的光伏发电量短期预测 被引量:6

Photovoltaic power short-termprediction based on fuzzy neural network
下载PDF
导出
摘要 受天气状况、辐照度、温度、湿度等气象因素的影响,光伏系统的输出具有很强的非线性和非平稳性的特点,光伏发电量预测精度较低。该文根据光伏系统的历史发电数据和实际气象数据,采用模糊识别与RBF神经网络相结合的方法,实现光伏系统发电量的短期预测。首先对影响预测结果的气象因素进行分析,然后按天气类型进行分类,对不同的天气类型分别建立模型进行训练,最后利用此模型预测未来的光伏系统发电量,并通过实验仿真验证。预测结果表明,该方法不但减少了模型所需样本数量而且提高了预测的精度,具有一定的科研价值。 Affected by weather conditions, irradiance, the influence of the meteorological factors such as temperature, humidity, the output of the photovohaic system has the characteristics of strong nonlinear and non-stationary, photovohaic power generation forecasting precision is low. Based on the history of the photovohaic system to generate electricity data and actual meteorological data. By adopting the combination of fuzzy recognition and RBF neural network method, realized the short-term prediction of a photovoltaic power system.First meteorological factors affecting the prediction results were analyzed, and then according to classify the weather types, on different weather types training model respectively, finally using this model to predict the future of a photovoltaic power system, and through the simulation experiment.Predicted results show that this method not only reduces the required sample size and improve the accuracy of the prediction model, has certain research value.
作者 张玉 万成伟 ZHANG Yu WAN Cheng-wei(College of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541006, China)
出处 《电子设计工程》 2017年第2期150-153,共4页 Electronic Design Engineering
基金 广西教育厅重点项目(ZD2014064)
关键词 模糊神经网络 发电量预测 光伏 天气类型 fuzzy neural network power prediction photovohaic(pv) weather types
  • 相关文献

参考文献7

二级参考文献54

  • 1李碧君,方勇杰,杨卫东,徐泰山.光伏发电并网大电网面临的问题与对策[J].电网与清洁能源,2010,26(4):52-59. 被引量:76
  • 2雷绍兰,孙才新,周湶,邓群,刘凡.一种多变量时间序列的短期负荷预测方法研究[J].电工技术学报,2005,20(4):62-67. 被引量:18
  • 3飞思科技产品研发中心.神经网络理论与Matlab7实现[M].北京:电子工业出版社,2003:116-125.
  • 4Femia N, Petrone G, Spagnuolo G, et al. Optimization of perturb and observe maximum power point tracking method[J]. IEEE Transactions on Power Electronics, 2005, 20(4): 963-973.
  • 5Kim I S, Kim M B, Youn M J. New maximum power point tracker using sliding-mode observer for estimation of solar array current in the grid-connected photovoltaic system[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1027-1035.
  • 6Xiao W, Lind M G J, Dunford W G, et al. Real-time identification of optimal operating points in photovoltaic power systems[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1017-1026.
  • 7Chakraborty S, Weiss M D, Simoes M G. Distributed intelligent energy management system for a single-phase high-frequency AC microgrid[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 97-109.
  • 8Yona A, Senjyu T, Funabashi T. Application of recurrent neural network to short-term-ahead generating power forecasting for photovoltaic system[C]. IEEE Power Engineering Society General Meeting, 2007.
  • 9Tsikalakis A G, Hatziargyriou Nikos D. Centralized control for optimizing microgrids operation[J]. IEEE Transactions on Energy Conversion, 2008, 23(1): 24 1-248.
  • 10Kem E C, Culachenski E M, Ken G A. Cloud effects on distributed photovoltaic generation: slow transients at the gardner, massachusetts photovoltaic experiment[J]. IEEE Transactions on Energy Conversion, 1989,4(2): 184-190.

共引文献317

同被引文献75

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部