期刊文献+

水耕人为土时间序列铁氧化物与磁化率演变特征 被引量:12

Evolution Characteristics of Iron Oxides and Magnetic Susceptibility in Stagnic Anthrosols along Chronosequences
下载PDF
导出
摘要 以我国亚热带地区不同母质起源的水耕人为土时间序列为研究对象,分析不同形态铁氧化物和磁化率随成土时间的动态演变特征及其影响因素。结果表明,石灰性母质起源的水耕人为土0~120 cm土体中全铁(Fet)、游离铁(Fed)和游离度(Fed/Fet)随时间序列演变均逐渐增加,0~50 a内Fet、Fed和Fed/Fet增加速率分别为3.2 t hm^(-2) a^(-1)、1.2 t hm^(-2) a^(-1)和0.04%a^(-1),50~1 000 a内Fet、Fed和Fed/Fet增加速率分别为0.1 t hm^(-2) a^(-1)、0.15 t hm^(-2) a^(-1)和0.01%a^(-1);而酸性母质起源的水耕人为土0~120 cm土体中Fet、Fed和Fed/Fet随时间序列演变均逐渐下降,0~60 a内Fet、Fed和Fed/Fet下降速率分别为0.2 t hm^(-2) a^(-1)、0.5 t hm^(-2) a^(-1)和0.03%a^(-1),60~300 a内Fet、Fed和Fed/Fet下降速率分别为0.9 t hm^(-2) a^(-1)、1.2 t hm^(-2) a^(-1)和0.06%a^(-1)。土壤pH、Eh、以及外源铁输入与土体内铁淋失的相对强度是控制不同母质水耕人为土中铁氧化物转化速率与途径的主要因素。石灰性母质起源的水耕人为土中不同磁学指标随时间演变分为三个阶段:0~50 a内表现为质量磁化率(MS)、饱和等温剩磁(SIRM)和软剩磁(IRMs)的急剧降低;50~300 a内表现为MS、SIRM和IRMs的持续、缓慢降低以及硬剩磁(IRMh)的相对稳定发展;300~1 000 a内表现为MS、SIRM和IRMs的持续、缓慢降低以及IRMh的快速下降。酸性母质起源的水耕人为土0~20 cm和20~120 cm土壤中磁学指标演变呈现截然不同的两个阶段:0~60 a 0~20 cm内MS,SIRM和IRMs的急剧降低,IRMh具有明显增加;而20~120 cm内MS、SIRM和IRMs缓慢下降,IRMh明显降低。60~300 a 0~20 cm内不同磁学指标变化幅度均很小,而20~120 cm内IRMh相对比较稳定,MS、SIRM和IRMs在种稻150 a后快速下降。淹水还原条件下亚铁磁性矿物的破坏是不同母质水耕人为土演变过程中磁性衰减的主要机制。 【Objective】The study is oriented to explore characteristics of the evolution of iron oxides and magnetic susceptibility in Stagnic Anthrosols, different in parent material, in subtropical China along chronosequence and their influencing factors. 【Method】Soil samples were collected for extraction of total Fe (Fet), free Fe oxides (Fed), amorphous Fe oxides (Feo) and organic-bound Fe (Fep) by the lithium metaborate fusion method, the dithionite-citrate-bicarbonate (DCB) method, acid ammonium oxalate (AAO) at pH=3 in the dark and Na-pyrophosphate at pH=10, separately. Magnetic susceptibility (MS) of the soils was measured at both low (0.47 kHz) and high frequencies (4.7 kHz) using a Bartington MS-2B meter with dual frequency sensor.【Result】Results show that along the chronosequence, weighted mean total Fe (Fet), free Fe oxides (Fed) and Fed/Fetin the 0~120 cm soil layer increased in the calcareous Stagnic Anthrosols, at a rate of 3.2 t hm-2a-1, 1.2 t hm-2a-1 and 0.04% a-1, respectively, during the first 50 years and at a rate of 0.1 t hm-2a-1, 0.15 t hm-2a-1 and 0.01% a-1, respectively, during the following 950 years (50 ~ 1000 years), but decreased in the acid Stagnic Anthrosols at a rate of 0.2 t hm-2a-1, 0.5 t hm-2a-1 and 0.03% a-1, respectively, during the first 60 years and at a rate of 0.9 t hm-2a-1, 1.2 t hm-2a-1 and 0.06% a-1 during the following 240 years (60 ~ 300 years), while weighted mean amorphous Fe oxides (Feo) and Feo/Fed in the 0~120 cm soil layer tended to decrease in the calcareous Stagnic Anthrosols, but did reversely in the acid Stagnic Anthrosols. Soil pH, Eh, and the balance between input of external Fe with irrigation and loss of internal Fe with leaching are major factors controlling the rates and pathways of Fe oxides transformation during the evolution of Stagnic Anthrosols. Along the chronosequence, the Stagnic Anthrosols derived from calcareous parent material underwent chronosequence demonstrated three phases of magnetic changes, i.e. the initial phase lasting a few decades dominated by rapid decreases in MS (magnetic susceptibility), SIRM (saturation isothermal remanent magnetization) and IRMs (soft isothermal remanent magnetization); the second phase lasting a bit more than two centuries (50~300 years) demonstrating constant IRMh (hard isothermal remanent magnetization) and slow decline in MS, SIRM, and IRMs; and the third phase (300 ~ 1000 years), witnessing minimal changes in MS, SIRM and IRMs but drastic decline in IRMh, while the Stagnic Anthrosols derived from acid parent material did two phases, which in the 0~20 cm soil layer were completely different from those in the 20~120 cm soil layer: In the first phase (0~60 years), MS, SIRM and IRMs declined but IRMh increased rapidly in the 0~20 cm soil layer, while all the magnetic properties declined in the 20~120 cm soil layer; However, in the second phase (60~300 years), all the magnetic properties did not vary much in the 0~20 cm soil layer, while MS, SIRM, and IRMs declined rapidly in the 20~120 cm soil layer after 150 years of paddy cultivation.【Conclusion】The overall magnetic depletion in the Stagnic Anthrosols, though different in parent material was attributed to the reductive dissolution of ferromagnetic minerals under artificial submergence.
作者 黄来明 邵明安 陈留美 韩光中 张甘霖 HUANG Laiming SHAO Ming'an CHEN Liumei HAN Guangzhong ZHANG Ganlin(Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China College of Resources and Envinonment, University of Chinese Academy of Sciences, Beijing 100049, China College of Resources and Environment, Zunyi Normal College, Zunyi, Guizhou 563002, China School of Geography and Resource Science, Neijiang Normal University, Neijiang, Sichuan 641112, China)
出处 《土壤学报》 CAS CSCD 北大核心 2017年第1期1-13,共13页 Acta Pedologica Sinica
基金 国家自然科学基金国际合作与交流项目(41571130051) 土壤与农业可持续发展国家重点实验室开放基金项目(Y20160003)资助~~
关键词 水耕人为土 时间序列 铁氧化物 磁化率 成土母质 Stagnic Anthrosols Chronosequence Iron oxides Magnetic susceptibility Parent material
  • 相关文献

参考文献4

二级参考文献16

  • 1徐琪.水稻土研究的进展——为庆祝建国40周年而作[J].土壤,1989,21(4):192-195. 被引量:5
  • 2俞劲炎 赵渭生 等.太湖流域水稻土的磁化率剖面[J].土壤学报,1981,18:376-382.
  • 3吴瑞金.湖泊沉积物的磁化率、频率磁化及其古环境意义[J].湖泊科学,1993,5:128-135.
  • 4团体著者,中国土壤(第2版),1987年
  • 5沈思渊,土壤学报,1986年,23卷,4期,354页
  • 6于天仁,水稻土的物理化学,1983年
  • 7熊毅,土壤胶体.1,1983年
  • 8Xu Zuyi,1980年
  • 9徐琪,中国太湖地区水稻土,1980年
  • 10张先婉,四川土壤通讯,1979年,2期,11页

共引文献20

同被引文献195

引证文献12

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部