期刊文献+

基于乘数交替方向法的系统图像退化恢复方法 被引量:2

An image restoration method for degradation of imaging system based on multipliers alternating direction method
下载PDF
导出
摘要 针对一般正则化方法不能有效解决非线性成像和高动态成像的系统退化恢复问题,提出一种非线性图像恢复方法,该方法利用乘数交替方向法解决双边全变差(bilateral total variation,BTV)模型的正则化项不平滑问题。建立包含复原图像的非线性最小二乘数据拟合项和BTV正则化项的目标函数;对目标函数进行优化;构建一套有效的乘数交替方向法(multiplier alternating direction method,MADM)求解提出的模型。利用峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性度量(structural similarity index measurement,SSIM)评估图像恢复结果。对于非线性成像系统退化,提出的方法在PSNR和SSIM方面比基于TV(total variation)模型的方法分别提高4.5%和4.1%。对于高动态的成像退化问题,提出的方法获得的恢复图像PSNR值可达61.89 d B,相比其他方法,至少提高了2.9%。此外,该方法的运行时间也至少节省了26%,具有较高的计算效率。 As common regularization cannot solve image restoration effectively in the cases of nonlinear imaging and high dynamic imaging,a nonlinear image restoration method is proposed,and in which multiplier alternating direction method is used to solve the non-smooth regularization problem in bilateral total variation( BTV) model. Firstly,the objective function that includes term of BTV regularization and term of nonlinear least squares fitting is created. Then,the objective function is optimized. Finally,an effective multiplier alternating direction method( MADM) is proposed to solve the proposed model. Peak signal to noise ratio( PSNR) and structural similarity index metric( SSIM) are applied to assessing the results of image restoration. For degradation of nonlinear imaging system,PSNR and SSIM of the proposed method is 4. 5% and4. 1% more than that of other methods based on TV model respectively. For degradation of high dynamic imaging system,PSNR of the restored image can get 61. 89 d B in the proposed method,which is 2. 9% more than that of other algorithms.Meanwhile,the running time is reduced by at least 26%,with efficiency computation.
作者 魏勇 孙波 杨观赐 WEI Yong SUN Bo YANG Guanci(Department of Computer Science and Technology, Henan Institute of Technology, Xinxiang 453003, P.R. China Key Laboratory of Advanced Manufacturing Technology of Ministry of Education, Guizhou University, Guiyang 550003, P. R. China)
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2017年第1期113-120,共8页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 河南省教育厅科学技术研究重点项目(13A520221 14A520045) 河南省高等学校重点科研项目(16B520010 16A520084 16A520083) 贵州省重大基础研究项目(黔科合JZ字[2014]2001号)~~
关键词 图像恢复 双边全变分 正则化 乘数交替方向法 最小二乘 成像系统退化 image restoration bilateral total variation regularization multiplier alternating direction least squares imaging system degradation
  • 相关文献

参考文献8

二级参考文献74

  • 1宋宇,李满天,孙立宁.基于相似度函数的图像椒盐噪声自适应滤除算法[J].自动化学报,2007,33(5):474-479. 被引量:42
  • 2王之江.实用光学技术手册[M].北京:机械工业出版社,2006:682-693.
  • 3张以漠.应用光学[M].北京:机械工业出版社,1982..
  • 4Chan T F, Shen J. hnage P:veessing and Analysis, Variational, PDE, Wavelet and Slochastic Methods [ M ]. Philadelphia, USA: SIAM, 2005.
  • 5Aubert G, Kornprol:sl P. Mathematical Problems in hnage Pro- eessing: Pa:lial Differential Equations and the Calculus of Varia- tions[M]. 2nd ed. New York: Springer, 2006.
  • 6Tikhonov A N. Regularization of incorrectly posed problems[J]. Soviet Matbematies Doklady, 1963, 4 (6) : 1624-1627.
  • 7Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Pbysica D, 1992, 60(1-4) :259-268.
  • 8Chambolle A, l,ions P L. Image reeoveL'y via total variation mini- mization and related p:x:blems [J]. Nmnerisehe Mathematik, 1997, 76(2) :167-188.
  • 9Chan T F, Marquina A, Mulet P. High-order total variation based image restoration [J]. SIAM J. Sei, Comput. , 2000, 22: 503-516.
  • 10Buades A, Coil B, Mnt l J M. A review of image denoising algo- rithms, with a new one[ J]. SIAM Muhise.ale Modeling and Sim- ulation, 2005, 4 ( 2 ) :490-530.

共引文献71

同被引文献6

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部