期刊文献+

Differential Evolution Based High-order Peak Filter Design with Application to Compensation of Contact-induced Vibration in HDD Servo Systems 被引量:2

Differential Evolution Based High-order Peak Filter Design with Application to Compensation of Contact-induced Vibration in HDD Servo Systems
原文传递
导出
摘要 Sensitivity loop shaping using add-on peak filters is a simple and effective method to reject narrow-band disturbances in hard disk drive (HDD) servo systems. The parallel peak filter is introduced to provide high-gain magnitude in the concerned frequency range of open-loop transfer function. Different from almost all the known peak filters that possess second-order structures, we explore in this paper bow high-order peak filters can be designed to improve the loop shaping performance. The main idea is to replace some of the constant coefficients of common second-order peak filter by frequency-related transfer functions, and then differential evolution (DE) algorithm is adopted to perform optimal design. We creatively introduce chromosome coding and fitness function design, which are original and the key steps that lead to the success of DE applications in control system design. In other words, DE is modified to achieve a novel design for hard disk drive control. Owing to the remarkable searching ability of DE, the expected shape of sensitivity function can be achieved by incorporating the resultant high-order peak filter in parallel with baseline feedback controller. As a result, a seventh-order peak filter is designed to compensate for contact-induced vibration in a high-density HDD servo system, where the benefits of high-order filter are clearly demonstrated. Sensitivity loop shaping using add-on peak filters is a simple and effective method to reject narrow-band disturbances in hard disk drive (HDD) servo systems. The parallel peak filter is introduced to provide high-gain magnitude in the concerned frequency range of open-loop transfer function. Different from almost all the known peak filters that possess second-order structures, we explore in this paper bow high-order peak filters can be designed to improve the loop shaping performance. The main idea is to replace some of the constant coefficients of common second-order peak filter by frequency-related transfer functions, and then differential evolution (DE) algorithm is adopted to perform optimal design. We creatively introduce chromosome coding and fitness function design, which are original and the key steps that lead to the success of DE applications in control system design. In other words, DE is modified to achieve a novel design for hard disk drive control. Owing to the remarkable searching ability of DE, the expected shape of sensitivity function can be achieved by incorporating the resultant high-order peak filter in parallel with baseline feedback controller. As a result, a seventh-order peak filter is designed to compensate for contact-induced vibration in a high-density HDD servo system, where the benefits of high-order filter are clearly demonstrated.
出处 《International Journal of Automation and computing》 EI CSCD 2017年第1期45-56,共12页 国际自动化与计算杂志(英文版)
基金 supported by National Natural Science Foundation of China(Nos.61640310 and 61433011)
关键词 Differential evolution (DE) contact-induced vibration peak filter optimization sensitivity loop shaping hard disk drive(HDD). Differential evolution (DE), contact-induced vibration, peak filter, optimization, sensitivity loop shaping, hard disk drive(HDD).
  • 相关文献

同被引文献10

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部