期刊文献+

智能家居用电优化调度建模及蚁群算法求解 被引量:1

Modeling of Household Energy Consumption Scheduling and Its Solving with Ant Colony Algorithm
下载PDF
导出
摘要 智能家居用电任务调度是基于智能家居平台,考虑用户习惯、电器属性等多项约束,对多种操作类型的电器设备实施用电安排的一种运行调度。智能家居用电任务调度具有广阔的研究前景,但是缺乏有效的调度算法。文中将家庭用电设备按可中断与不可中断设备分类,针对用电分时段计费条件下的智能家居调度问题,以最小化日用电费用为目标,构建了数学模型;并设计了蚁群算法求解,且进行了MATLAB编程仿真。实验结果表明,该优化算法能很好地优化用电任务调度,达到减少用电费用、激励用户侧合理分配家居用电的目的,进而对电网负荷峰值的缓解有一定的帮助。 Electricity consumption task scheduling for smart household is an operational scheduling which can arrange operational tasks of multiple electrical equipments based on smart household platform,with user habits,electrical properties and other constraints taken into consideration.Electricity consumption task scheduling for smart household has a broad prospect of research,but lacks of effective scheduling algorithm.Therefore,the household tasks are classified into interruptible and no-interruptible devices with relevant attributes.Aiming at a problem of smart household scheduling in the condition of different time periods,the mathematical model is built with the goal of minimizing the cost of electricity for one day. And an ant colony algorithm is designed to solve it and the simulation is carried out by MATLAB.According to experimental results,the improved algorithm can optimize the household consumption scheduling with certain efficiency and reach the purpose of reducing the cost of electricity and motivating the lateral distribution of household electricity for users,which can be helpful for releasing of peak power load to some extent.
机构地区 上海大学
出处 《计算机技术与发展》 2017年第2期195-199,共5页 Computer Technology and Development
基金 国家自然科学基金资助项目(71201097) 上海市2015年度"科技创新行动计划"高新技术领域(15511109700)
关键词 智能电网 用电任务调度 蚁群算法 智能家居 smart grid energy consumption scheduling ant colony algorithm smart household
  • 相关文献

参考文献8

二级参考文献94

  • 1章鹿华,王思彤,易忠林,袁瑞铭,周晖,殷庆铎.面向智能用电的家庭综合能源管理系统的设计与实现[J].电测与仪表,2010,47(9):35-38. 被引量:63
  • 2段海滨,王道波.蚁群算法的全局收敛性研究及改进[J].系统工程与电子技术,2004,26(10):1506-1509. 被引量:39
  • 3段海滨,王道波,朱家强,黄向华.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326. 被引量:211
  • 4张纪会 徐心和.带遗忘因子的蚁群算法[J].系统仿真学报,2000,(2).
  • 5余贻鑫.面向21世纪的智能配电网.南方电网技术研究,2006,2(6):14-16.
  • 6EPRI. 1009102 Power delivery system and electricity markets of the future[R]. PaloAlto, CA: EPRI, 2003.
  • 7EPRI. 1010915 Technical and system requirements of advanced distrihutionautomation[R]. PaloAlto, CA: EPRI, 2004.
  • 8EPRI. 1014600 Electricite de France research and development, profiling and mapping of intelligent grid r&d programs[R]. Palo Alto, CA: EPRI, 2006.
  • 9Haase P. Intelligrid: a smart network of power[J]. EPRI Journal, 2005(Fall): 17-25.
  • 10U. S. Department of Energy , National Energy Technology Laboratory. Modern grid initiative: a vision for modern grid[EB/OL]. 2007-03-01 [2008-10-10]. http://www.netl.doc.gov/modemgrid/docs/.

共引文献979

同被引文献19

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部