期刊文献+

壳聚糖功能微球负载贵金属的研究进展 被引量:3

Research progress in noble metal-supported chitosan functional microspheres
下载PDF
导出
摘要 贵金属凭借其空的d电子轨道、较小的能级间距和配位的多样性成为多领域研究热点,但目前价格昂贵、储量稀少、利用率低下,极大地限制了贵金属的广泛应用,因此近年来发展优异的功能载体成为贵金属应用领域的研究趋势,这不仅可以方便贵金属的回收循环利用,同时可避免体系内的痕量残留,减少环境污染。本文综述了一种廉价无毒、含有丰富羟基、氨基基团的壳聚糖绿色材料作为贵金属载体的研究近况,介绍了国内外在吸附、催化等领域应用壳聚糖材料的代表性学术成果,比较并分析了不同表面修饰手段对壳聚糖载体贵金属作用效果的影响,概括了目前壳聚糖功能载体在贵金属研究中存在的形貌研究相对局限、可控制备难以实现规模化等问题,同时预测了壳聚糖材料在生物医药领域良好的发展前景。 Noble metal,has become a research focus in multiple fields due to its empty d electron orbit,small energy gap and diverse coordinations. However,high prices,rare reserves and low utilization have severely restricted their extensive application. So developing excellent functional carriers has become a hot area recently,which makes noble metals be separated from the reaction system easily and recycled effectively and avoids trace residues within the system, reducing environmental pollution. This paper reviewed recent studies of the cheap,non-toxic chitosan green materials which are rich in hydroxyl groups,amino groups and used as noble metal carriers. It also introduced domestic and international representative academic achievements which apply functionlized chitosan in adsorption,catalysis,medicine and other applications. Influences of different surface modification methods on the interaction between noble metals and chitosan carrier have been compared and analyzed. And we outlined the current problems in the noble metal research,such as relatively limited study on morphology and difficulties in controllable large-scale preparation. And its development in biological medicine has been also forecasted.
出处 《化工进展》 EI CAS CSCD 北大核心 2017年第2期595-601,共7页 Chemical Industry and Engineering Progress
关键词 复合材料 离子交换 催化剂载体 吸附 微通道 composites ion exchange catalyst support adsorption microchannels
  • 相关文献

参考文献2

二级参考文献46

  • 1郭彬,刘辉,郝志显,甘礼华,徐子颉,陈龙武.原位合成的活性脲醛树脂作为模板剂制备二氧化硅介孔材料[J].化学学报,2006,64(8):756-760. 被引量:11
  • 2张濂.化学反应工程原理[M].上海:华东理工大学出版社,2007.
  • 3AGNIHOTRI S, AMINABHAVI T. Novel interpenetrating network chitosan-poly(ethylene oxide-g-acrylamide) hydrogel microspheres for the controlled release of capecitabine [J]. International Journal of Pharmaceutics, 2006, 324 (2): 103-115.
  • 4BAIG R B N, NADAGOUDA M N, VARMA R S. Ruthenium on chitosan: a recyclable heterogeneous catalyst for aqueous hydration ofnitriles to amides [J]. Green Chemistry, 2014, 15: 1839-1843.
  • 5HAGAN K A, FERRANCE J P, LANDERS J P. Chitosan-coated silica as a solid phase for RNA purification in a microfluidic device [J]. Analytical Chemistry, 2009, 81: 5249-5256.
  • 6XU J H, GE X H, CHEN R, et al. Microfluidic preparation and structure evolution of double emulsions with two-phase cores [J]. RSCAdvances, 2014, 4 (4): 1900-1906.
  • 7XU J H, LI S W, TAN J, et al. Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping [J]. Microfluidics and Nanofluidics, 2008, 5 (6): 711-717.
  • 8XU J H, LUO G S, LI S W, et al. Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties [J]. Lab on a Chip, 2006, 6 (1): 131-136.
  • 9XU J H, LI S W, TOSTADO C, et al. Preparation of monodispersed chitosan microspheres and in situ encapsulation of BSA in a co-axial microfluidic device [J]. Biomed. Microdevices, 2009, 11: 243-249.
  • 10XU J H, ZHAO H, LAN W J, et al. A novel microfluldic approach for monodispersed chitosan microspheres with controllable structures [J]. Advanced Healthcare Materials, 2012, 1 (1): 106-111.

共引文献5

同被引文献50

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部