摘要
碎片清除飞行器异面变轨需要消耗大量燃料.从气动辅助异面变轨优化设计及被清除碎片轨道高度差值、倾角差值等参数对变轨性能的影响出发,比较分析了优化气动辅助异面变轨与双脉冲霍曼轨道转移的燃料节约量,研究了不同轨道高度差对于实施气动辅助变轨燃料节约量的影响.当地球静止轨道(GEO)与低地轨道(LEO)间气动辅助变轨优化速度增量约为1.55 km·s^(-1)、质量面积比172 kg·m^(-2)、比冲310 s、轨道倾角变化16°时,燃料节约率约为45%.对比研究了不同轨道高度差LEO轨道间实施气动辅助变轨的燃料节约情况.结果表明:随着轨道高度的增加,气动辅助优化效率逐渐降低;在相同高度轨道间实施异面变轨,随着轨道倾角的增加,气动辅助变轨燃料节约率先增大后减小,倾角改变量约为20°时,燃料节约率最大;当轨道倾角为5°时,采用气动辅助变轨和双脉冲变轨的燃料消耗量相同.
Noncoplanar orbit transfer of debris remove vehicle needs lots of fuel. In this paper the optimal impulsive design for aeroassisted orbital transfer from Low Earth Orbit (LEO) or Geosta- tionary Earth Orbit (GEO) to LEO with an inclination change is presented. Through comparison of the double-impulsive Hohmann orbit transfer and aeroassisted orbit transfer in noncoplanar or- bit, the fuel savings of different altitude or inclination from two noncoplanar orbits are concluded. Results show that the minimum velocity increment of orbit transfer between GEO and LEO is 1.55 km-s-1. With the increase of orbital altitude difference, aeroassisted orbital transfer efficiency gradually reduces. Implementation of aeroassisted orbit transfer with the same orbital altitude, low orbit aeroassisted orbit transfer optimization efficiency is higher than that of high orbit. When the value of orbital inclination between two noncoplanar orbits is less than 5°, the fuel consumptions by adopting aeroassisted orbit transfer and double impulse orbit transfer are equal. For aeroassisted orbit transfer optimization between noncoplanar orbits with the same altitude but different orbital inclination difference, with the increase of orbit inclination difference, the fuel saving first increases then decreases, and when the angle is about 20~, the fuel savings rate is the maximum.
作者
闫瑞东
王荣兰
刘四清
师立勤
龚建村
YAN Ruidong WANG Ronglan LIU Siqing SHI Liqin GONG Jiancun(National Space Science Center, Chinese Academy of Sciences, Beijing 100190)
出处
《空间科学学报》
CAS
CSCD
北大核心
2017年第1期105-113,共9页
Chinese Journal of Space Science
基金
国家自然科学基金项目资助(11403070)
关键词
多碎片清除
气动辅助变轨
轨道设计
Multi-debris remove, Aeroassisted orbital transfer, Optimal impulsive design