期刊文献+

变结构遗传最小二乘支持向量机法预测日用水量 被引量:2

Daily water demand forecasting method based on variable structure genetic least squares support vector machine
下载PDF
导出
摘要 为解决日用水量预测模型的动态参数估计问题,提出了基于变结构遗传最小二乘支持向量机的预测模型.以日用水量的主要影响因素和相关日用水量为输入,利用遗传算法对基于LSSVM的历史日用水量模型参数进行寻优,获得模型结构参数序列;采用扩展卡尔曼滤波器估计基于最小二乘支持向量机的预测日用水量模型参数,进而预测下一日用水量.实例分析表明:提出的模型具有较高的预测精度,预测的最大绝对相对误差仅为9.3%,平均绝对相对误差为2.09%. To dynamically estimate the parameters of daily water consumption model, a new variable-structure genetic least squares vector machine(LSSVM)-based model is proposed. The principal factors of daily water consumption and the correlative daily water consumption are used as the model inputs. With genetic algorithm, the parametersseries of LSSVM-based historical daily water consumption models aredetermined. With the series, Extended Kalman Filter(EKF) is applied to estimate the parameters of LSSVM-based next-day prediction modeland the next-day daily water consumption is forecasted. Case study shows that the proposed model has higher forecasting performance in term of a maximum absolute relative error of 9. 3% and a mean absolute relative error of 2.09% .
作者 陈磊 石也 CHEN Lei SHI Ye(College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China)
出处 《浙江工业大学学报》 CAS 北大核心 2017年第1期69-72,共4页 Journal of Zhejiang University of Technology
基金 国家自然科学基金资助项目(50908165) 浙江省饮用水安全保障与城市水环境治理重点科技创新团队项目(2010R50037)
关键词 遗传算法 最小二乘支持向量机 变结构 扩展卡尔曼滤波 日用水量 genetic algorithm least squares vector machine variable structure extended Kalman Filter daily water consumption
  • 相关文献

参考文献4

二级参考文献34

  • 1李玉华,王征.蚂蚁算法在日用水量预测中的应用研究[J].哈尔滨工业大学学报,2005,37(1):60-62. 被引量:20
  • 2张宏伟,岳琳,王亮.基于径向基函数的城市日用水量预测方法[J].天津大学学报,2006,39(4):486-489. 被引量:10
  • 3王亮,汪震,岳琳.基于粒子群优化算法的城市日用水量预测模型[J].中国给水排水,2007,23(7):89-93. 被引量:10
  • 4Graaf J M, Meester-Broertjes H A, Bruggeman W A, et al. Sustainable technological development for urban-water cycles[J]. Water Science and Technology, 1997,35(10): 213-220.
  • 5Zhou S L, McMahon T A, Walton A, et al. Forecasting operational demand for an urban water supply zone[J]. Journal of Hydrology, 2002,259(3): 189-202.
  • 6El-Keib A, Ma X, Ma H. Advancement of statistical based modeling techniques for short-term load forecasting[J]. Electric Power Systems Research, 1995,35(1):51-58.
  • 7Al-Kandarl A M, Soliman S A, El-Hawary M E. Fuzzy short-term electric load forecasting[J]. Electrical Power and Energy Systems ,2004,26(2): 111-122.
  • 8Kalogirou S A. Applications of artificial neural-networks for energy systems[J]. Applied Energy, 2000,67(1): 17-35.
  • 9Chiu C C, Cook D F, Kao J L, et al. Combining a neural network and a rule-based expert system for short-term load forecasting[J]. Computers and Industrial Engineering,1997, 32(4):787-797.
  • 10Ranaweera D K, Hubele N F, Karady G G. Fuzzy logic for short term load forecasting[J]. International Journal of Electrical Power and Energy Systems, 1996, 18(4): 215-222.

共引文献43

同被引文献22

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部