期刊文献+

关于广义量词many的广义三段论推理 被引量:2

Generalized Syllogistic Reasoning Including the Generalized Quantifier“many”
下载PDF
导出
摘要 三段论在自然语言信息处理和知识推理中占据着突出的地位,它们在自亚里士多德以来的逻辑中也一直扮演着重要作用。我们用广义量词many对传统三段论推理进行了扩展,利用广义量词理论和集合论,从语法上证明了14个广义三段论推理的有效性。这一方法为其他广义量词的广义三段论提供了一个简单合理的数学模式。 Syllogistic arguments are prominent in natural language information processing and knowledge reasoning, and they have played important role in logic since Aristotle .The general- ized quantifier "many" is applied in this paper to expand the traditional reasoning of generalized syllogisms, and the validity of 14 generalized syllogisms is syntactically proved by means of gen- eralized quantifier theory and set theory. This method provides a simple and reasonable mathe- matical model of generalized syllogisms for other generalized quantifiers.
作者 李晟 袁兆隆 LI Sheng YUAN Zhao-long(Institute of Logic and Information College of Political Education, Sichuan Normal University, Chengdu, Sichuan 610066, China)
出处 《四川师范大学学报(社会科学版)》 CSSCI 北大核心 2017年第1期15-19,共5页 Journal of Sichuan Normal University(Social Sciences Edition)
基金 国家社科基金西部项目"面向中文信息处理的汉语主谓句的逻辑语义及其推理模式研究"(15XYY012)
关键词 传统三段论 广义三段论 广义量词 推理 classical syllogisms generalized syllogisms generalized quantifiers reasoning
  • 相关文献

参考文献5

二级参考文献42

  • 1林胜强,张晓君.广义量词的推理模式研究[J].湖南科技大学学报(社会科学版),2014,17(6):29-33. 被引量:8
  • 2J. Barwise and R. Cooper, 1981,“Generalized quantifiers and natural language”,Lin-guistics and Philosophy, 4(2): 159-219.
  • 3J. Barwise and J. Etchemendy, 2003, Language, Proof and Logic,Stanford, CA: CSLIPublications.
  • 4J. van Eijck, 2005,“Syllogistics = monotonicity + symmetry + existential import”,http://www.oai.cwi.nl/oai/asset/10940/10940D.pdf.
  • 5C. K. Fat, 2012,Inferential Patterns of Generalized Quantifiers and their Applicationsto Scalar Reasoning, Ph. D. dissertation, Hong Kong Polytechnic University.
  • 6E. L. Keenan and D. Westerstahl, 1997,“Generalized quantifiers in linguistics andlogic”,in J. Benthem and A. Meulen (eds.),Handbook of Logic and Language, 14,837—893,Amsterda: Elsevier.
  • 7W. A. Murphree, 1991,Numerically Exceptive Logic: A Reduction of the ClassicalSyllogism, New York: P. Lang.
  • 8S. Peters and D. Westerstahl, 2006, Quantifiers in Language and Logic,Oxford: Clare-don Press.
  • 9P. L. Peterson, 2000, Intermediate Quantifiers: Logic, Linguistics, and AristotelianSemantics, Aldershot: Ashgate.
  • 10F. Sommers and G, Englebretsen, 2000, An Invitation to Formal Reasoning: The logicof Terms, Aldershot: Ashgate.

共引文献16

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部