摘要
本文研究有界噪声扰动下平面微分系统周期轨的分支问题.首先介绍平面微分系统周期轨的三类经典分支:叉型分支、鞍结分支和跨临界分支,并给出其分支方向以及分支出的周期轨的稳定性.然后讨论有界噪声扰动下平面微分系统周期轨的分支现象,考虑该扰动系统极小正向不变集的个数随参数值变化而变化的规律,证明该系统在一定条件下发生所谓的硬分支现象,并给出分支参数值的阶数估计.最后给出具体的例子并进行数值模拟,形象直观地说明本文结果.
The present paper is dedicated to the bifurcation of periodic orbit for a class of planar differential systems with bounded random perturbation. We first recall three kinds of bifurcations of a nonhyperbolic pe- riodic orbit for planar differential systems with a parameter: Pitchfork bifurcation, saddle-node bifurcation and transcritical bifurcation. The direction and the stability of the periodic orbits bifurcating from the nonhyperbolic periodic orbit are investigated. Then we consider a bounded random perturbation on this system, and study the minimal forward invariant (abbreviated as MFI) sets of the perturbed system. When the parameter changes in a small neighborhood of a bifurcation value, we show that the number of MFI sets changes and the hard bifurcation occurs. Some examples are provided to illustrate our theoretical results.
作者
马纪英
肖冬梅
许钊泉
MA JiYing XIAO DongMei XU ZhaoQuan
出处
《中国科学:数学》
CSCD
北大核心
2017年第1期155-170,共16页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:11371248和11501364)资助项目
关键词
平面微分系统
有界噪声
极小正向不变集
硬分支
planar differential system, bounded random perturbation, MFI set, hard bifurcation