期刊文献+

半群中的Lipschitz各态历经和广义各态历经

The Lipschitz ergodicity and generalized ergodicity of semigroups
原文传递
导出
摘要 本文利用链回复性研究连续映射迭代形成的半群上Lipschitz各态历经和广义各态历经,分别给出Lipschitz各态历经和广义各态历经的充分必要条件,并举例说明各态历经、广义各态历经和Lipschitz各态历经性的关系. In this paper, the semigroup is defined by the continuous transformation on the compact metric space. We use the chain recurrence to study the Lipschitz ergodicity and generalized ergodicity. Some criterions for a system to be Lipschitz ergodic or generalized ergodic are given. At last, we illustrate the relationship between ergodicity, generalized ergodicity and Lipschitz ergodicity.
作者 夏旭 郑作环 周喆 XlAXu ZHENGZuoHuan ZHOUZhe
出处 《中国科学:数学》 CSCD 北大核心 2017年第1期205-220,共16页 Scientia Sinica:Mathematica
基金 中国科学院随机复杂结构与数据科学重点实验室(批准号:2008DP173182) 国家数学与交叉科学中心 国家自然科学基金(批准号:11301512)资助项目
关键词 Lipschitz各态历经 广义各态历经 对偶不变集 连续区域 ?扩张集 Lipschitz ergodicity, generalized ergodicity, dual invariant set, continuation region, Ω-expansive set
  • 相关文献

参考文献1

二级参考文献10

  • 1Arnold V I, Avez A. Ergodic Problems of Classical Mechanics. New York: Benjamin, 1968.
  • 2Chen G R, Zheng Z H. An equivalent relationship in discrete dynamical systems. Comput Math Appl, 2005, 49: 1433-1437.
  • 3Conley C. Isolated Invariant Set and the Morse Index. In: CBMS Regional Conference Ser in Math No. 38. Providence, RI: Amer Math Soc, 1978.
  • 4Easton R. Chain transitivity and the domain of influence of an invariant set. In: Lecture Notes in Mathematics, vol. 668. New York: Springer, 1978, 95-102.
  • 5Kolmogorov A N. On dynamical systems with an integral invariant on the torus. Dokl Akad Nauk SSSR Ser Mat, 1953, 93:763-766.
  • 6Waiters P. An Introduction to Ergodic Theory. New York: Springer-Verlag, 1982.
  • 7Wang H F, Yu S X. Qualitative Theory of Ordinary Differential Equations. Guangzhou: Guangdong Higher Education Publishing House, 1996.
  • 8Yu S X. On dynamical systems with an integral invariant on the torus. J Differential Equations, 1984, 53:277 287.
  • 9Zheng Z H. Chain transitivity and Lipschitz ergodicity. Nonlinear Anal, 1998, 34:733 744.
  • 10Zheng Z H. Generalized ergodicity. Sci China Ser A, 2001, 44:1098-1106.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部