摘要
本文考虑了基于均值-方差准则下的连续时间投资组合选择问题。为了对冲市场中的利率风险和通货膨胀风险,假定市场上存在可供交易的零息名义债券和零息通货膨胀指数债券。另外,投资者还可以投资一个价格具有Heston随机波动率的风险资产。首先建立了基于均值-方差框架下的最优投资组合问题,然后将原问题进行转换,利用随机动态规划方法和对偶Lagrangian原理,获得了均值-方差准则下的有效投资策略以及有效前沿的解析表达形式,最后对相关参数的敏感性进行了分析。
In this paper, we consider the continuous time optimal investment portfolio problem under mean- variance criterion. In order to hedge the risks of interest and inflation in the market, we assume that the financial market consists of an nominal zero-coupon bond and an inflation-indexed bond, and a risky asset who' s price follows Heston' s stochastic volatility. We first establish an optimal investment portfolio problem under mean- variance criterion. Then we transform the original problem into a tractable one, and by using stochastic dynamic programming and dual Lagrangian theorem, a closed-form of the efficient policy and the efficient frontier are obtained. Finally, a sensibility analysis is provided for corresponding parameters.
出处
《运筹与管理》
CSSCI
CSCD
北大核心
2017年第1期148-155,共8页
Operations Research and Management Science
基金
甘肃省城市发展研究院资助项目(2014-GSCFY-KJ02)
教育部人文社会科学基金资助项目(13YJCZH247)
广东省哲学社会科学基金资助项目(GD12XYJ06)
甘肃省高等学校科研项目(2013A-097)
兰州城市学院重点学科立项资助