期刊文献+

基于通货膨胀风险和Heston随机波动率下的最优资产配置 被引量:8

Optimal Asset Allocation with Inflation Risk and Heston's Stochastic Volatility
下载PDF
导出
摘要 本文考虑了基于均值-方差准则下的连续时间投资组合选择问题。为了对冲市场中的利率风险和通货膨胀风险,假定市场上存在可供交易的零息名义债券和零息通货膨胀指数债券。另外,投资者还可以投资一个价格具有Heston随机波动率的风险资产。首先建立了基于均值-方差框架下的最优投资组合问题,然后将原问题进行转换,利用随机动态规划方法和对偶Lagrangian原理,获得了均值-方差准则下的有效投资策略以及有效前沿的解析表达形式,最后对相关参数的敏感性进行了分析。 In this paper, we consider the continuous time optimal investment portfolio problem under mean- variance criterion. In order to hedge the risks of interest and inflation in the market, we assume that the financial market consists of an nominal zero-coupon bond and an inflation-indexed bond, and a risky asset who' s price follows Heston' s stochastic volatility. We first establish an optimal investment portfolio problem under mean- variance criterion. Then we transform the original problem into a tractable one, and by using stochastic dynamic programming and dual Lagrangian theorem, a closed-form of the efficient policy and the efficient frontier are obtained. Finally, a sensibility analysis is provided for corresponding parameters.
出处 《运筹与管理》 CSSCI CSCD 北大核心 2017年第1期148-155,共8页 Operations Research and Management Science
基金 甘肃省城市发展研究院资助项目(2014-GSCFY-KJ02) 教育部人文社会科学基金资助项目(13YJCZH247) 广东省哲学社会科学基金资助项目(GD12XYJ06) 甘肃省高等学校科研项目(2013A-097) 兰州城市学院重点学科立项资助
关键词 均值-方差准则 通胀指数债券 HJB方程 对偶Lagrangian原理 有效前沿 mean-variance criterion inflation-indexed bond HJB equation dual tagrangian theorem efficient frontier
  • 相关文献

参考文献2

二级参考文献46

  • 1郭文旌,胡奇英.不确定终止时间的多阶段最优投资组合[J].管理科学学报,2005,8(2):13-19. 被引量:23
  • 2Markowitz H. Portfolio selection[J]. J of Finance, 1952, 7(1): 77-91.
  • 3Li D, Ng W L. Optimal dynamic portfolio selection: Multiperiod mean-variance formulation[J]. Mathematical Finance, 2000, 10(3): 387-406.
  • 4Zhou X Y, Li D. Continuous-time mean-variance portfolio selection: A stochastic LQ framework[J]. Applied Mathematics Optimization, 2000, 42(1): 19-33.
  • 5Zhu S S, Li D, Wang S Y. Risk control over bankruptcy in dynamic portfolio selection: A generalized mean-variance formulation[J]. IEEE Trans on Automatic Control, 2004, 49(3): 447-457.
  • 6Wei S Z, Ye Z X." Multi-period optimization portfolio with bankruptcy control in stochastic market[J]. Applied Mathematics and Computation, 2007, 186(1): 414-425.
  • 7Oswaldo L V C, Michael V A. A generalized multi- period mean-variance portfolio optimization with Markov switching parameters[J]. Automatica, 2008, 44(10): 2487- 2497.
  • 8Li X, Zhou X Y, Lim A E B. Dynamic mean-variance portfolio selection with no-shorting constraints[J]. SIAM J on Control and Optimization, 2002, 40(5): 1540-1555.
  • 9Chen P, Yang H L, Yin G. Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model[J]. Insurance: Mathematics and Economics, 2008, 43(3): 456-465.
  • 10Xie S X, Li Z E Wang S Y. Continuous-time portfolio selection with liability: Mean-variance model and stochastic LQ approach[J]. Insurance: Mathematics and Economics, 2008, 42(3): 943-953.

共引文献34

同被引文献35

引证文献8

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部