期刊文献+

Dynamic soft sensor development based on Gaussian mixture regression for fermentation processes 被引量:9

Dynamic soft sensor development based on Gaussian mixture regression for fermentation processes
下载PDF
导出
摘要 The dynamic soft sensor based on a single Gaussian process regression(GPR) model has been developed in fermentation processes.However,limitations of single regression models,for multiphase/multimode fermentation processes,may result in large prediction errors and complexity of the soft sensor.Therefore,a dynamic soft sensor based on Gaussian mixture regression(GMR) was proposed to overcome the problems.Two structure parameters,the number of Gaussian components and the order of the model,are crucial to the soft sensor model.To achieve a simple and effective soft sensor,an iterative strategy was proposed to optimize the two structure parameters synchronously.For the aim of comparisons,the proposed dynamic GMR soft sensor and the existing dynamic GPR soft sensor were both investigated to estimate biomass concentration in a Penicillin simulation process and an industrial Erythromycin fermentation process.Results show that the proposed dynamic GMR soft sensor has higher prediction accuracy and is more suitable for dynamic multiphase/multimode fermentation processes. The dynamic soft sensor based on a single Gaussian process regression(GPR) model has been developed in fermentation processes.However,limitations of single regression models,for multiphase/multimode fermentation processes,may result in large prediction errors and complexity of the soft sensor.Therefore,a dynamic soft sensor based on Gaussian mixture regression(GMR) was proposed to overcome the problems.Two structure parameters,the number of Gaussian components and the order of the model,are crucial to the soft sensor model.To achieve a simple and effective soft sensor,an iterative strategy was proposed to optimize the two structure parameters synchronously.For the aim of comparisons,the proposed dynamic GMR soft sensor and the existing dynamic GPR soft sensor were both investigated to estimate biomass concentration in a Penicillin simulation process and an industrial Erythromycin fermentation process.Results show that the proposed dynamic GMR soft sensor has higher prediction accuracy and is more suitable for dynamic multiphase/multimode fermentation processes.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第1期116-122,共7页 中国化学工程学报(英文版)
基金 Supported by the Natural Science Foundation of Jiangsu Province of China(BK20130531) the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD[2011]6) Jiangsu Government Scholarship
关键词 Dynamic modeling Process systems Instrumentation Gaussian mixture regression Fermentation processes 发酵过程 软测量模型 高斯过程 混合回归 过程动态 软传感器 回归模型 结构参数
  • 相关文献

参考文献1

二级参考文献15

  • 1熊志化,张继承,邵惠鹤.基于高斯过程的软测量建模[J].系统仿真学报,2005,17(4):793-794. 被引量:37
  • 2颜学峰,余娟,钱锋.优选优生进化算法及4-CBA软测量模型参数估计[J].高校化学工程学报,2005,19(2):238-243. 被引量:5
  • 3王华忠,俞金寿.基于混合SVR-PLS方法的丙烯腈收率软测量建模[J].控制与决策,2005,20(5):549-552. 被引量:10
  • 4马勇,黄德先,金以慧.动态软测量建模方法初探[J].化工学报,2005,56(8):1516-1519. 被引量:27
  • 5Brosillow C B. Inferential control of process. AIChE J. , 1978, 24 (3): 485-509.
  • 6Kresta J V, Martin T E, MacGregor J F. Development of inferential process models using PLS. Computers and Chemical Engineering, 1994, 18 (7): 597-611.
  • 7Willis M J, Montague G A, Massimo D C, etal. Artificial neural networks in process estimation and control. Automatica, 1992, 28 (6): 1181-1187.
  • 8Liu Ruilan, Su Hongye, etal. Fuzzy neural network model of 4-CBA concentration for industrial PTA oxidation process. Chinese Journal of Chemical Engineering, 2004, 12 (2): 234-239.
  • 9Fortuna L, Graziani S, Xibilia M G. Soft sensors for product quality monitoring in debutanizer distillation columns. Control Engineering Practice, 2005, 13 (4) : 499-508.
  • 10Desai K, Badhe Y, Tamble S S, et al. Soft sensordevelopment for fed-batch bioreactors using support vectorregression. Biochemical Engineering Journal, 2006, 27 (3):225-239.

共引文献21

同被引文献43

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部