期刊文献+

Sparse Signal Recovery via Exponential Metric Approximation

Sparse Signal Recovery via Exponential Metric Approximation
原文传递
导出
摘要 Sparse signal recovery problems are common in parameter estimation, image processing, pattern recognition, and so on. The problem of recovering a sparse signal representation from a signal dictionary might be classified as a linear constraint l_0-quasinorm minimization problem, which is thought to be a Non-deterministic Polynomial-time(NP)-hard problem. Although several approximation methods have been developed to solve this problem via convex relaxation, researchers find the nonconvex methods to be more efficient in solving sparse recovery problems than convex methods. In this paper a nonconvex Exponential Metric Approximation(EMA)method is proposed to solve the sparse signal recovery problem. Our proposed EMA method aims to minimize a nonconvex negative exponential metric function to attain the sparse approximation and, with proper transformation,solve the problem via Difference Convex(DC) programming. Numerical simulations show that exponential metric function approximation yields better sparse recovery performance than other methods, and our proposed EMA-DC method is an efficient way to recover the sparse signals that are buried in noise. Sparse signal recovery problems are common in parameter estimation, image processing, pattern recognition, and so on. The problem of recovering a sparse signal representation from a signal dictionary might be classified as a linear constraint l_0-quasinorm minimization problem, which is thought to be a Non-deterministic Polynomial-time(NP)-hard problem. Although several approximation methods have been developed to solve this problem via convex relaxation, researchers find the nonconvex methods to be more efficient in solving sparse recovery problems than convex methods. In this paper a nonconvex Exponential Metric Approximation(EMA)method is proposed to solve the sparse signal recovery problem. Our proposed EMA method aims to minimize a nonconvex negative exponential metric function to attain the sparse approximation and, with proper transformation,solve the problem via Difference Convex(DC) programming. Numerical simulations show that exponential metric function approximation yields better sparse recovery performance than other methods, and our proposed EMA-DC method is an efficient way to recover the sparse signals that are buried in noise.
出处 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2017年第1期104-111,共8页 清华大学学报(自然科学版(英文版)
基金 supported in part by the National Natural Science Foundation of China (Nos. 61171120 and 61501504) the Key National Ministry Foundation of China (No. 9140A07020212JW0101) the Foundation of Tsinghua University (No. 20141081772)
关键词 sparse recovery exponential metric approximation sparsity tolerance DC optimization signal-to-noiseratio sparse recovery exponential metric approximation sparsity tolerance DC optimization signal-to-noiseratio
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部