期刊文献+

基于模糊神经网络的燃气轮机热力部件故障诊断研究 被引量:2

A Study on Fault Diagnosis for Thermal Components of Gas Turbine Based on Fussy Neural Network
下载PDF
导出
摘要 针对燃气轮机热力部件故障,提出了基于模糊神经网络的故障检测和诊断方法。在利用模糊规则描述系统故障状态的基础上,通过建立故障诊断目标函数,利用误差反向梯度算法实时修正神经网络连接权值和阈值。仿真结果证明与传统BP神经网络相比,模糊神经网络在对燃气轮机热力部件故障的识别中,具有更高的准确率。 A method of fault detection and diagnosis for thermal components of gas turbine is proposed on the basis of the theory of fuzzy neural network. By using fuzzy rules to describe the status of system fault and establishing the object function for fault diagnosis, it uses error back gradient algorithm to realize real-time correction of the connection weight and threshold of the neural network. Simulation results show that, compared with traditional BP neural network, the fuzzy neural network is more accurate in the fault recognition of thermal components of the gas turbine.
出处 《电气自动化》 2017年第1期110-112,共3页 Electrical Automation
关键词 热力部件 燃气轮机 模糊神经网络 故障诊断 仿真 thermal component gas turbine fuzzy neural network fault diagnosis simulation
  • 相关文献

参考文献4

二级参考文献61

共引文献30

同被引文献12

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部