摘要
Objective: To investigate the distribution and differentiation of myeloid-derived suppressor cells (MDSCs) in hemorrhagic shock mice, which are resuscitated with normal saline (NS), hypertonic saline (HTS), and hydroxyethyl starch (HES). Methods: BALB/c mice were randomly divided into control, NS, HTS, and HES resuscitation groups. Three subgroups (n=8) in each resuscitation group were marked as 2, 24, and 72 h. Flow cytometry was used to detect the MDSCs, monocytic MDSCs (M-MDSCs), and granulocytic/neutrophilic MDSCs (G-MDSCs) in peripheral blood nucleated cells (PBNCs), spleen single-cell suspension, and bone marrow nucleated cells (BMNCs). Results: The MDSCs in BMNCs among three resuscitation groups were lower 2 h after shock, in PBNCs of the HTS group were higher, and in spleen of the NS group were lower (all P〈0.05 vs. control). The M-MDSC/G-MDSC ratios in PBNCs of the HTS and HES groups were lower (both ,P〈0.05 vs. control). At 24 h, the MDSCs in PBNCs of the NS and HTS groups were higher, while the spleen MDSCs in the HTS group were higher (all P〈0.05 vs. control). The M-MDSC/ G-MDSC ratios were all less in PBNCs, spleen, and BMNCs of the NS and HTS groups, and were lower in BMNCs of the HES group (all P〈0.05 vs. control). At 72 h, the elevated MDSCs in PBNCs were presented in the HTS and HES groups, and in spleen the augment turned up in three resuscitation groups (all P〈0.05 vs. control). The inclined ratios to M-MDSC were exhibited in spleen of the NS and HTS groups, and in PBNCs of the NS group; the inclination to G-MDSC in BMNCs was shown in the HES group (all P〈0.05 vs. control). Conclusions: HTS induces the earlier ele- vation of MDSCs in peripheral blood and spleen, and influences its distribution and differentiation, while HES has a less effect on the distribution but a stronger impact on the differentiation of MDSCs, especially in bone marrow.
目的:在失血性休克小鼠模型中使用不同的液体复苏,包括等渗盐水(NS)、高渗盐水(HTS)和羟乙基淀粉(HES),比较在不同时间点髓源性抑制细胞(MDSCs)在外周血、脾脏和骨髓组织中分布和分化的情况。创新点:(1)创建失血性休克小鼠模型;(2)将MDSCs引入失血性休克液体复苏后免疫变化的研究中;(3)对骨髓、脾脏和外周血细胞中的MDSCs分布进行研究,并探讨了在失血性休克不同液体复苏后MDSCs的分化趋势,为临床上形成规范的救治方案提供了科学的实践资料。方法:将BALB/c雄性小鼠随机分成四组,除对照组外,其余三组在建立失血性休克小鼠模型后采用不同的液体复苏:NS组、HTS组和HES组。在模型建立后的2、24和72 h分批次处死小鼠,取外周血、脾脏和骨髓细胞组织,通过三色荧光标记流式细胞术进一步分析MDSC细胞含量,以及其两亚组单核髓源性抑制细胞(M-MDSC)和中性粒髓源性抑制细胞(G-MDSC)的比值。结论:HTS可诱导MDSCs在外周血和脾脏中的早期积累,并影响MDSCs分化和分布;而HES对MDSCs的分布影响较小,但对MDSCs在骨髓中的分化影响较大。
基金
Project supported by the National Natural Science Foundation of China(No.81272075)