期刊文献+

局部形状特征概率混合的半自动三维点云分类 被引量:6

A semi-automatic 3D point cloud classification method based on the probability mixture of local shape features.
下载PDF
导出
摘要 三维激光扫描获取的点云数据可用于数字城市建设、三维模型获取、场景分析与物体测量等领域.但因遮挡和噪声的影响,加之扫描场景复杂,采样精度受限,使得不能直接运用经典的曲面和三维空间理论对点云数据进行有效分析和处理.分类是点云数据预处理的重要方式之一.提取近邻四面体体积、近邻法向量差异度、主方向差异度和主曲率值4个局部形状特征,采用概率混合策略构建了一种点云数据的半自动分类方法,可实现平面点集、柱面点集和其他点集的有效区分.其中,概率混合策略是依据近邻点平均距离和单指标类别一致程度估计每个特征推断形状的概率,通过混合加权,依据概率赋权函数最大值准则进行局部形状推断.可实现用户交互,以便处理不同扫描尺度和精度的点云数据.采用本文方法对模拟生成的点云、单棵树木点云、街道场景点云、旷野自然场景扫描点云以及航空机载扫描点云等多组数据进行了实验,结果表明,基于局部形状特征的概率混合方法对各种点云数据均具有良好的分类效果. Point clouds captured by three dimensional scanner have been used in many fields, including modeling of digital cities, acquisition of three dimensional shapes, scene analysis and object measuring. However, due to the limitation of the sampling process and the complexity of scanned scenes, most traditional methods of surface model ing and three dimensional space analysis cannot work effectively when dealing with the point cloud data. Classifica tion is therefore an important way for point cloud preprocess. Four features, namely the volume of a tetrahedron constructed by 4 neighboring points, the deviation of normal directions of neighboring points, the deviation of prin- cipal directions of neighboring points, and the values of principal curvature, are mixed with probabilities for semi- automatic classification of the three dimensional point cloud data. With the new method, a point cloud is to be divid ed into three classes: plane points, cylinder points and other points. The initial classification result is labeled accord- ing to its single shape feature value. The probability mixture is completed by estimating the probability of inferring a shape from a local point set with respect to each feature, generating a mixture with weighted sum, and maximizing the mixture probability function, while the probability is estimated with the average distance between a point and its neighbor points together with the consistency ratio of initial labels of the point to its neighbors. User interactions are invoked to make the choice of classification thresholds and the setting of weights, which is helpful when dealing with point cloud with different space scale and scanning point resolution. Experiments show that the proposed method works well for various kinds of point cloud data sets, including point clouds generated by simulation, and those corresponding to a single pine tree, a street scene, a country scene, and an airborne big scene.
作者 李红军 刘欣莹 张晓鹏 严冬明 LI Hongjun LIU Xinying ZHANG Xiaopeng YAN Dongming(College of Science, Beijing Forestry Uni- versity, Beijing 100083, China NLPR-LIAMA , Institute of Automation, CAS, Beijing 100190, China)
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2017年第1期1-9,共9页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金资助项目(61372190 61372168 61572502 61571439) 国家863计划课题项目(2015AA016402)
关键词 点云分类 局部形状推断 概率混合 法向量差异 主曲率 大规模场景分析 point cloud classification local shape inference probability mixture normal difference principal curva-ture large scale scene analysis
  • 相关文献

参考文献5

二级参考文献149

  • 1王健,靳奉祥,吕海彦,林照明.基于车载激光测距的建筑物立面信息提取[J].山东科技大学学报(自然科学版),2004,23(4):8-11. 被引量:14
  • 2史文中,李必军,李清泉.基于投影点密度的车载激光扫描距离图像分割方法[J].测绘学报,2005,34(2):95-100. 被引量:90
  • 3罗志清,张惠荣,吴强,李琛,陈申,丁秀泉,王溪.机载LiDAR技术[J].国土资源信息化,2006(2):20-25. 被引量:45
  • 4吴芬芳,李清泉,熊卿.基于车载激光扫描数据的目标分类方法[J].测绘科学,2007,32(4):75-77. 被引量:25
  • 5Vosselman M G, Kessels P, Gorte B G H. The utilisation of airborne laser scanning for mapping[J]. International Journal of Applied Earth Qbservation and Geoinformation, 2005, 6(3/4) : 177 - 186.
  • 6Pfeifer N, Kostli A, Kraus K. Interpolation and filtering of laser scanner data-implementation and first results [C]//Pfeifer N. International archives of photogrammetry and remote sensing. Amsterdam: ISPRS Press, 1998:153 - 159.
  • 7Briese C, Pfeifer N. Airborne laser scanning and derivation of digital terrain models [C]//Pfeifer N. Proceedings of the 5th Conference on Optical 3D Measurement Techniques. Vienna: Elsevier Press, 2001 : 80 - 87.
  • 8Lee H S, Younan N H. DTM extraction of Lidar returns via adaptive processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41 (9): 2063 - 2069.
  • 9Axelsson P. DEM generation from laser scanner data using adaptive TIN models[C]//Axelsson P. IAPRS. Amsterdam.. ISPRS Press, 2000: 110 - 117.
  • 10Vosselman G. Slope based filtering of laser altimetry data[C]//Vosselman G. IAPRS. Amsterdam:ISPRS Press,2000:935 - 942.

共引文献60

同被引文献61

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部