期刊文献+

基于滑移率补偿的月球车牵引控制与仿真分析 被引量:2

Rover's Traction Control and Simulation Analysis Based on Slip Ratio Compensation
下载PDF
导出
摘要 针对月球车驱动轮滑移率过大而引起的驱动轮打滑现象,提出了利用滑移率补偿的月球车牵引控制方法。依据所有转向轮的瞬时转向中心相交于一点,实现月球车驱动轮的协调转向;利用速度与驱动力矩具有对偶性完成了对月球车力矩的分配;通过设计模糊控制器实现了对滑移率补偿项的模糊控制。仿真结果表明,基于滑移率补偿的月球车牵引控制能有效的将车轮滑移率控制在阈值之内,避免了车轮因打滑而出现的车体速度下降,有效地跟踪了期望的车体速度,具有更好的跟踪性能和鲁棒性。 Aiming at the phenomenon of driving wheel slippage,the rover's traction control method based on slip ratio compensation is proposed. Steering control can be realized by the instantaneous centers of motion of all the steerable wheels intersected at one point; the dualistic relationship between traction torque and velocity is used to implement the wheel torque distribution; the fuzzy control of the slip ratio compensation term is realized by designing the fuzzy controller. Simulation results show that the slip ratio of rover's traction control system based on slip ratio compensation is adjusted within threshold, and the velocity of rover decrease caused by driving wheel slippage is avoided. The desired velocity can be accurately tracked, and the traction control system has good tracking performance and robustness.
作者 高鹏 许红霞
出处 《计算机仿真》 北大核心 2017年第2期30-34,共5页 Computer Simulation
基金 国家重点实验室基金(2012afd1040)
关键词 滑移率补偿 模糊控制 力矩分配 牵引控制 Slip ratio compensation Fuzzy control Torque distribution Traction control
  • 相关文献

参考文献2

二级参考文献20

  • 1王庆年,王志浩,李杰敏.车轮重复通过对沙土力学特性影响及参数预测[J].农业工程学报,1995,11(4):33-38. 被引量:5
  • 2居鹤华,崔平远,崔祜涛.具有滑移的摇臂式月球车建模与控制[J].机械工程学报,2005,41(9):134-139. 被引量:8
  • 3Daniel M Helmick, Yang Cheng, Daniel S Clouse, Max Bajracharya, Larry H, Matthies Stergios I. Slip compensation for a mars rover[ C ]. IEEE/RSJ Int. Conf on Intelligent Robots and Systems, 2005, 8:2806-2813.
  • 4Mongkol Thianwiboon, Viboon Sangveraphunsiri. Traction control for a rocker-bogie robot with wheel-ground contact angle estimation [ C ]. RoboCup 2005 : Robot Soccer World Cup IX. Springer-Verlag, 2006 : 682 - 690.
  • 5Mahmoud Tarokh, Gregory J McDermott. Kinematics modeling and analyses of articluated rovers[ J]. IEEE Transactions on Robotics, 2005, 21(4): 539-553.
  • 6Karl lagnemma, Steven Dubowsky. Mobile robot rough-terrain control (RTC) for planetary exploration [ C]. Proc. of the 26th ASME Biennial Mechanisms and Robotics Conf, Baltimore, Maryland, 2000:10 - 13.
  • 7Yuan Ping Li, Denny Oetomo, Marcelo H, Ang Jr and Chee Wang Lim. Torque distribution and slip minimization in an omnidirectional mobile base[ C]. Proc. of the 12th Int. Conf on Advanced Robotics, Seattle, Washington, USA, 2005:567 -572.
  • 8Tarokh M, MKinematic G, Hayati S, Hung J. Kinematic modeling of a high mobility mars rover[ C]. Proc. of the 1999 IEEE Int. Conf on Robotics & Automation, Detroit, Michigan, 1999, 5: 992 - 998.
  • 9Hollerbach J M, Suh K C. Redundancy resolution of manipulators through torque optimization [ C ]. Proc. of the 1987 IEEE Int. Conf on Robotics & Automation, 1987 : 619 -624.
  • 10Jeffrey J Biesiadeeki, Mark W Maimone. The mars exploration rover surface mobility flight software: driving ambition[ C]. Proc. of 2006 IEEE Aerospace Conf, Big Sky, Montana, USA, 2006.

共引文献7

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部