期刊文献+

反舰导弹目标跟踪滤波研究 被引量:1

Research of the Anti-Missile Target Tracking Filter
下载PDF
导出
摘要 高速高机动目标跟踪优化中针对反舰导弹具有复杂的转弯机动能力,需要解决高速目标非线性滤波难点。为解决上述问题传统的扩展卡尔曼滤波不能求解非线性方程,提出粒子滤波可以处理模型方程为非线性、噪声分布为非高斯分布的问题,因此粒子滤波器对转弯机动有更好的滤波性能。将粒子滤波器应用到转弯机动跟踪中,从理论上看可以对模型不确定性取得良好的适应性。通过仿真检验,粒子滤波器的性能明显优于扩展卡尔曼滤波器,结果表明对高速高机动目标反舰导弹提高了跟踪性能。 In order to deal with strong nonlinearity and non - Gaussian noise distribution for anti - ship missile, a particle filter for target tracking is proposed. The particle filter has better filter performance in turn maneuver than the Kalman filter. The particle filter is applied to the target tracking of anti - ship missile. It can acquire excellent adaptation to model uncertainty theoretically. Simulation results indicate that the proposed particle filter is superior to the extended Kalman filter obviously, and improves tracking performance of anti - ship missile towards target with high speed and high maneuver.
作者 雷振达
出处 《计算机仿真》 北大核心 2017年第2期53-55,269,共4页 Computer Simulation
关键词 非线性 非高斯 粒子滤波 不确定性 Nonlinearity Non - Gaussian noise Particle filter Uncertainties
  • 相关文献

参考文献4

二级参考文献62

  • 1Zhang Meng, Chen Ken, Guo Yunyan.Online parameter based Kalman filter precision target tracking[C]//The 2nd evaluation method for video Intemational Conference on Multimedia Technology (ICMT2011 ).Hangzhou: 1EEE, 2011 598-601.
  • 2A. Yilmaz, O. Javed, M. Shah. Object tracking: a survey. ACM Computer Surveys, 2006, 38(4): 229 — 240.
  • 3A. Puri, K. P. Valavanis, M. Kontitsis. Statistical profile generation for traffic monitoring using real-time UAV based video data. Proceedings of the Mediterranean Conference on Control and Automation. New York: IEEE, 2007: 1 - 6.
  • 4D. Comaniciu, V. Ramesh, P. Meer. Real-time tracking of non-rigid objects using mean shift. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2000: 142 - 149.
  • 5R. T. Collins. Mean-shift blob tracking through scale space. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2003: 230-240.
  • 6D. Comaniciu, V. Ramesh, P. Meer. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25(5): 564 - 575.
  • 7J. Wang, X. Chen, W. Gao. Online selecting discriminative tracking features using particle filter. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2005: 1037 - 1042.
  • 8J. Wang, Y. Yagi. Integrating color and shape-texture features for adaptive real-time object tracking. IEEE Transactions on Image Processing, 2008,17(2): 235 - 240.
  • 9J. WANG, Y. Yagi. Integrating shape and color features for adaptive real-time object tracking. Proceedings of the IEEE International Conference on Robotics and Biomimetics. Piscataway: IEEE, 2006: 1-6.
  • 10S. T. Birchfield, S. Rangarajan. Spatiograms versus histograms for region-based tracking. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2005: 1158 - 1163.

共引文献12

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部