期刊文献+

基于超图直推非负矩阵分解的图像标注法研究 被引量:1

The Research of Image Annotation based on Hypergraph Transduction Non-negative Matrix Factorization
下载PDF
导出
摘要 为解决传统图像标注方法难以准确建立从低层视觉特征到高层语义空间映射关系的问题,提出了一种基于超图直推非负矩阵分解的图像标注算法。通过把有监督超图正则化思想引入到非负矩阵分解框架,使得图像标注算法可以有效地利用样本间复杂的多元关系和标注信息,而直推学习正则项的利用又增加了算法对标签预测误差进行合理控制的能力。在图像标注数据集上的仿真结果表明,相对于支持向量机、鉴别式度量学习等传统的图像标注算法,提出的算法大幅提高了标注的准确率和模型的鲁棒性。并具有很好的可行性和有效性。 This article proposes an image annotation algorithm based on non - negative matrix factorization of hypergraph transduction. Firstly, the regularization principle of supervising hypergraph was introduced into frame of non - negative matrix factorization. The image annotation utilized complex multi - relationship among samples and annotation information effectively. Meanwhile, rational control ability of algorithm for forecast error of label was increased to use regular terms of transduction learning. Results of simulation on dataset of image annotation show that the algorithm improves accuracy of annotation and robustness of model significantly compared with traditional image annotation algorithms such as support vector machine and measurement learning with discrimination type. It has excellent feasibility and validity.
出处 《计算机仿真》 北大核心 2017年第2期380-384,440,共6页 Computer Simulation
关键词 图像标注 流形学习 超图直推 非负矩阵分解 Image annotation Manifold learning Hypergraph transduction Non - negative matrix factorization
  • 相关文献

参考文献1

二级参考文献20

  • 1WrightJ, Ma Y, MairalJ, et al . Sparse representation for computer vision and pattern recognition[J]. Proceedings a/the IEEE, 2010, 98(6): lO31-1044.
  • 2Shen L, Yeo C, and Hua B. Intrinsic image decomposition using a sparse representation of reflectance[J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(12): 2904-2915.
  • 3Wu F, Han Y, Liu X, et al. The heterogeneous feature selection with structural sparsity for multimedia annotation and hashing: a survey[J]. InternationalJournal of Multimedia Information Retrieval, 2012, 1(1): 3-15.
  • 4Wu F, Han Y, Tian Q, et al. Multi-label boosting for image annotation by structural grouping sparsity[C]. ACM International Conference on Multimedia, Firenze, Italy, 2010: 15-24.
  • 5Yang Y, Huang Z, Yang Y, et al. Local image tagging via graph regularizedJoint group sparsity[J], Pattern Recognition, 2013, 46(5): 1358-1368.
  • 6Gao S, Chia L T, Tsang I W H, et al. Concurrent single-label image classification and annotation via efficient multi-layer group sparse coding[J]. IEEE Transactions on Multimedia, 2014, 16(3): 762-771.
  • 7Jayaraman D, Sha F, and Grauman K. Decorrelating semantic visual attributes by resisting the urge to share[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1629-1636.
  • 8Bahrampour S, Ray A, Nasrabadi N M, et al. Quality-based multimodal classification using tree-structured sparsity[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 4114-4121.
  • 9ChoJ, Lee M, Chang HJ, et al. Robust action recognition using local motion and group sparsity[J]. Pattern Recognition, 2014, 47(5): 1813-1825.
  • 10Yogatama D and Smith N A. Making the most of bag of words: sentence regularization with alternating direction method of multipliers[C]. International Conference on Machine Learning, Beijing, 2014, Vol. 32: 656-664.

共引文献3

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部