期刊文献+

超声红外热像中激励源位置对裂纹生热的影响 被引量:2

Effect of excitation position on crack heating characteristics in sonic IR imaging
下载PDF
导出
摘要 超声红外热像技术是一种新型无损检测技术,裂纹生热效果直接决定了裂纹的可检测性,而激励源位置是影响裂纹生热的因素之一。针对激励源位置对裂纹生热影响不清楚的问题,建立了超声换能器与被测金属平板的有限元模型,并搭建了超声红外热像检测系统;研究了不同激励源位置时裂纹的生热特性;并利用等效摩擦力、等效速度以及等效热流进行了有效验证。研究表明:当激励源位于裂纹面正下方时,由于裂纹面两侧振动同步,裂纹生热效果将受到抑制;而随着激励源位置向两侧移动,裂纹生热呈现出先波动上升后波动下降的趋势,而且预紧力越大波动越剧烈。研究成果有效地揭示了激励源位置对裂纹生热的影响规律,为超声红外热像技术的检测优化奠定了理论基础。 Sonic IR imaging is one of the emerging NDT methods. The detectability of the cracks is based on its heating effect, which correlates with several excitation conditions, for example the excitation position. For the unclear effect of excitation position on crack heating, the finite element model and the experimental system was utilized to study the characteristic of crack heating under different excitation positions, and made an effective verification by using the equivalent force, equivalent velocity and equivalent heat flux. The research shows that when the excitation position is under the crack face, the crack heating will be restrained as a result of vibration synchronization for the two crack surfaces.However, as the excitation position moves both sides, the crack heating will rise first and fall later with a fluctuation, and bigger engagement force can lead it more severe. The study results clearly demonstrate the effect principle of excitation position on crack heating, which may further lay the theory basis to the optimization of test conditions in the sonic IR imaging.
出处 《红外与激光工程》 EI CSCD 北大核心 2017年第1期94-100,共7页 Infrared and Laser Engineering
基金 军内计划科研项目
关键词 激励源位置 裂纹生热 有限元分析 超声红外热像 excitation position crack heating finite element analysis sonic IR imaging
  • 相关文献

参考文献3

二级参考文献17

  • 1Favro L D, Han X, Ouyang Z, et al. Infrared imaging of defects heated by a sonic pulse [J]. Rev Sci Instrum, 2000,71(6) : 2418- 2421.
  • 2Perez I, Davis W R. Optimizing the thermosonics signal[J].Rev Prog Quant Nondestruct Eval, 2003 (22): 505-512.
  • 3Balasubramaniam K, Nair N V, Veeraraghavan S, et al. Modeling of effects of excitation velocities on the thermal image obtained for thermosonic NDE[J].Rev Prog Quant Nondestruct Eval, 2003 (22) : 525- 530.
  • 4Morbidini M, Cawley P, Barden T, et al. Prediction of the thermosonic signal from fatigue cracks in metals using vibration damping measurements[J].J Appl Phys, 2006,100 (10) : 104905.
  • 5Han X, Zeng Z, Li W, et al. Acoustic chaos for enhanced detectability of cracks by sonic infrared imaging [J].J Appl Phys,2004,95(7):3792-3797.
  • 6Lick K, Urcinas J, Austin P, et al. Study of diminutive and subsurface cracks using sonic IR inspection [J]. Rev Prng Quant Nondestruct Eval,2008(27):504 -511.
  • 7Kang B, Cawley P. Multi-mode excitation system for thermosonic testing of turbine blades[J]. Rev Prog Quant Nondestruct Eval,2008(27) :520-527.
  • 8Han X, Islam M, Newaz G, et al. Finite element modeling of the heating of cracks during sonic infrared imaging[J]. J Appl Phys,2006,99(7) : 074905.
  • 9杜功焕,朱哲民,龚秀芬.声学基础(第二版)[M].南京:南京大学出版社,2004.
  • 10Jeremy Renshaw,John C. Chen,Stephen D. Holland,R. Bruce Thompson.The sources of heat generation in vibrothermography[J]. NDT and E International . 2011 (8)

共引文献53

同被引文献42

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部