摘要
设X为点传递图,F是与图X具有相同顶点集合的1因子图,若X∪F的补图X∪F≌X称X是几乎自补点传递图.通过Cayley同构方法构造了一族几乎自补点传递图.并将此方法应用一类CI-群上,得到了在此类群上的几乎自补的Cayley图的构造.
Let X be a vertex-transitive graph and is 1-factor graph where its vertex set is same as X. If ,the complementary graph of X U -XU ≌X, X is called almost self-complementary graph. In this paper, by Cayley isomorphism we give a construction of almost self-complementary graph. And the method is applied on a CI-group, then all of the almost self-complementary Cayley graph on the group can be given.
作者
杜君毅
马雪松
DU Jun-yi MA Xue-song(Capital Normal University, School of Mathematical Sciences, Beijing 100048, China)
出处
《数学的实践与认识》
北大核心
2016年第24期279-286,共8页
Mathematics in Practice and Theory
基金
国家自然科学基金(11371259
11431003)