期刊文献+

几乎自补Cayley图及其在CI-群上的应用

Almost Self-complementary Cayley Graphs and Its Application on Cl-groups
原文传递
导出
摘要 设X为点传递图,F是与图X具有相同顶点集合的1因子图,若X∪F的补图X∪F≌X称X是几乎自补点传递图.通过Cayley同构方法构造了一族几乎自补点传递图.并将此方法应用一类CI-群上,得到了在此类群上的几乎自补的Cayley图的构造. Let X be a vertex-transitive graph and is 1-factor graph where its vertex set is same as X. If ,the complementary graph of X U -XU ≌X, X is called almost self-complementary graph. In this paper, by Cayley isomorphism we give a construction of almost self-complementary graph. And the method is applied on a CI-group, then all of the almost self-complementary Cayley graph on the group can be given.
作者 杜君毅 马雪松 DU Jun-yi MA Xue-song(Capital Normal University, School of Mathematical Sciences, Beijing 100048, China)
出处 《数学的实践与认识》 北大核心 2016年第24期279-286,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金(11371259 11431003)
关键词 CAYLEY图 点传递 齐次分解 1因子图 拟二面体群 CI-群 cayley graphs vertex-transitive graphs 1-factor graphs quasi-dihedral groups
  • 相关文献

参考文献1

二级参考文献14

  • 1Peisert W. All self-complementary symmetric graphs[J]. Journal of Algebra, 240: 209-229.
  • 2Muzychuk M. On Sylow subgraphs of vertex-transitive self-complementary graphs[J]. Bull London Math Soc, 1999(31): 531-533.
  • 3Jajcay R and Li C H. Consturctions of Self-complementary Circulant with No Multiplicative Iso- morphisms[J]. Eourp J Combinatorics, 2001(22): 1093-1100.
  • 4Li C H. On isomorphisms of connected Cayley graphs[J]. Discrete Mathematics, 1998(178): 109-122.
  • 5Sun S H, Li C H and Xu J. On self-complementary circulants of square free Order[J]. Algebra Colliqum, 17:2 (2010) / 241-246.
  • 6Sun S H. Self-complementary Vertex-Transitive Graphs with Order p^2 [M]. Master thesis, Peking University.
  • 7Suprunenko D A. Self-complementary graphs[J]. Cybernetics, 1985(21): 559-567.
  • 8Dobson E. On self-complementary vertex-transitive graphs of order a product of distinct primes[J] Ars Combin, 2004(71): 249-256.
  • 9Biggs N. Algebraic Graph Theory (the 2nd edition)[M]. Cambriage University press, 1993.
  • 10Huppert B, Endliche Gruppen I[M]. Springer-Verlag, Berlin, 1967.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部