期刊文献+

Bayesian Empirical Likelihood Estimation of Quantile Structural Equation Models 被引量:6

Bayesian Empirical Likelihood Estimation of Quantile Structural Equation Models
原文传递
导出
摘要 Structural equation model(SEM) is a multivariate analysis tool that has been widely applied to many fields such as biomedical and social sciences. In the traditional SEM, it is often assumed that random errors and explanatory latent variables follow the normal distribution, and the effect of explanatory latent variables on outcomes can be formulated by a mean regression-type structural equation. But this SEM may be inappropriate in some cases where random errors or latent variables are highly nonnormal. The authors develop a new SEM, called as quantile SEM(QSEM), by allowing for a quantile regression-type structural equation and without distribution assumption of random errors and latent variables. A Bayesian empirical likelihood(BEL) method is developed to simultaneously estimate parameters and latent variables based on the estimating equation method. A hybrid algorithm combining the Gibbs sampler and Metropolis-Hastings algorithm is presented to sample observations required for statistical inference. Latent variables are imputed by the estimated density function and the linear interpolation method. A simulation study and an example are presented to investigate the performance of the proposed methodologies. Structural equation model (SEM) is a multivariate analysis tool that has been widely applied to many fields such as biomedical and social sciences. In the traditional SEM, it is often assumed that random errors and explanatory latent variables follow the normal distribution, and the effect of explanatory latent variables on outcomes can be formulated by a mean regression-type structural equation. But this SEM may be inappropriate in some cases where random errors or latent variables are highly nonnormal. The authors develop a new SEM, called as quantile SEM (QSEM), by allowing for a quantile regression-type structural equation and without distribution assumption of random errors and latent variables. A Bayesian empirical likelihood (BEL) method is developed to simultaneously estimate parameters and latent variables based on the estimating equation method. A hybrid algorithm combining the Gibbs sampler and Metropolis-Hastings algorithm is presented to sample observations required for statistical inference. Latent variables are imputed by the estimated density function and the linear interpolation method. A simulation study and an example are presented to investigate the performance of the proposed methodologies.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2017年第1期122-138,共17页 系统科学与复杂性学报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant No.11165016
关键词 结构方程模型 经验似然估计 分位数回归 随机误差 混合算法 吉布斯抽样 SEM 分析工具 Bayesian empirical likelihood, estimating equations, latent variable models, MCMC algo-rithm, quantile regression, structural equation models.
  • 相关文献

同被引文献20

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部