期刊文献+

Hydrodynamic consideration in ocean current turbine design

Hydrodynamic consideration in ocean current turbine design
原文传递
导出
摘要 Ocean currents are one of important resources of ocean energy. Although it is not widely harnessed at present, ocean current power has a vital potential for future electricity generation. In fact, several turbine systems have been proposed in the world. In the present, we consider what factors should be considered in designing the system from the perspective of hydrodynamics. As an example, a floating Kuroshio turbine system which is under development in Taiwan is employed to serve as the case study. The system consists of five major parts; i.e. a foil float which can be employed to adjust the system submergence depth, a twin contrarotating turbine system for taking off the current energy, two nacelles housing power generators, a cross beam to connect two nacelle-and-turbine systems, and two vertical support to connect the foil float and the rest of the system. Ocean currents are one of important resources of ocean energy. Although it is not widely harnessed at present, ocean current power has a vital potential for future electricity generation. In fact, several turbine systems have been proposed in the world. In the present, we consider what factors should be considered in designing the system from the perspective of hydrodynamics. As an example, a floating Kuroshio turbine system which is under development in Taiwan is employed to serve as the case study. The system consists of five major parts; i.e. a foil float which can be employed to adjust the system submergence depth, a twin contrarotating turbine system for taking off the current energy, two nacelles housing power generators, a cross beam to connect two nacelle-and-turbine systems, and two vertical support to connect the foil float and the rest of the system.
出处 《Journal of Hydrodynamics》 SCIE EI CSCD 2016年第6期1037-1042,共6页 水动力学研究与进展B辑(英文版)
基金 supported by the support of Ministry of Science and Technology (Grant No. MOST 104-3113-F-019-002)
关键词 ocean current energy renewable energy system dynamics rotor design floating turbine ocean current energy, renewable energy, system dynamics, rotor design, floating turbine
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部