摘要
基于MATLAB智能工具箱对某300 MW电站锅炉进行了燃烧优化建模,首先利用BP(back propagation)神经网络建立了锅炉热效率和NO_x排放模型,用以预测锅炉热效率和NO_x排放特性,锅炉热效率预测的平均相对误差为0.14%,NO_x排放量的平均相对误差为1.79%,表明模型具有良好的准确性和泛化能力。基于该燃烧特性预测模型,借助于改进的遗传算法(genetic algorithm,GA)优化模型,在锅炉热效率可接受的某一范围内寻求NO_x排放的最优解,实现锅炉低NO_x排放燃烧优化,对实际的电站锅炉燃烧具有一定的指导意义。
MATLAB artificial intelligence toolbox was used to establish model to optimized combustion of a 300 MW utility boiler,firstly,BP(Back Propagation) neural network was used to establish boiler thermal efficiency and NO_x emission model to predict boiler thermal efficiency and NO_x emission,the average relative error of boiler thermal efficiency is 0.14%,and the average relative error of NO_x emissions is 1.79%,indicating that the model has good accuracy and generalization ability. With the aid of the improved genetic algorithm(GA) optimization model,to seek the optimal solution of NO_x emissions in a certain acceptable range of the boiler thermal efficiency,achieve low NO_x emission combustion optimization.The data has a certain guiding significance for the actual utility boiler combustion.
出处
《环境科学与技术》
CAS
CSCD
北大核心
2016年第12期139-143,共5页
Environmental Science & Technology
基金
国家自然科学基金项目(61262048)
关键词
燃煤电站锅炉
NOX排放
燃烧优化
coal-fired utility boiler
NOx emission
combustion optimization