期刊文献+

多核学习框架下多线索融合的显著性区域检测算法

Saliency region detection method based on multi cues fusion and multi kernel learning
下载PDF
导出
摘要 针对自底向上的显著性检测算法中存在的底层特征表达力弱、产生的显著图存在噪声等问题,提出了一种多核学习框架下多线索融合的显著性区域检测算法.首先,提出全局对比度和层次空间两种自底向上的显著性线索,产生的显著图为弱显著图;其次,以弱显著图为基础,得到正样本和负样本,每个样本用颜色和纹理特征表示;最后,在多核学习框架下进行多线索融合,得到自上而下的强显著图.在公开数据集上进行的实验结果表明,文中算法优于流行的显著性检测算法,可得到更高的准确率和查全率. The bottom-up saliency detection methods suffer from two problems : weak discriminative ability of image low-level features and noisy saliency maps. To overcome the problems, we proposed a multi kernel saliency detection framework in which multi cues are fused. First, two bottom-up saliency detection methods, global contrast and hierarchy spatial, are proposed to get weak saliency maps; then the training samples are obtained from the weak saliency maps and are expressed by low-level color and texture features; finally, the bottom-up saliency cues are fused in the multi kernel saliency detection framework and a strong and top-down saliency map is obtained. The experiments on public datasets show that our method achieves better results with higher precision and recall compared to other popular saliency detection methods.
作者 徐丹 于化龙 段先华 张绛丽 左欣 XU Dan YU Hualong DUAN Xianhua ZHANG Jiangli ZUO Xin(School of Computer Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China)
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2016年第6期591-598,共8页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 国家自然科学基金资助项目(61305058) 江苏省自然科学基金资助项目(BK20130471 BK20150470) 江苏省高校自然科学研究面上项目(16KJB52009 15KJB520008)
关键词 显著性检测 全局对比度 层次空间显著性 多核学习 saliency detection, global contrast, hierarchy spatial saliency, multi kernel learning
  • 相关文献

参考文献1

二级参考文献35

  • 1Borji A, Itti L. State-of-the-art in visual attention model- ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 185-207.
  • 2Borji A, Sihite D, Itti L. Quantitative analysis of human- model agreement in visual saliency modeling: a compara- tive study. IEEE Transactions on Image Processing, 2013, 22(1): 55-69.
  • 3Koch C, Ullman S. Shifts in selective visual attention: to- wards the underlying neural circuitry. Human Neurobiology, 1985, 4(4): 219-227.
  • 4Itti L, Koch C, Niebur E. A inodel of saliency-based vi- sual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11 ): 1254-1259.
  • 5Ma Y F, Zhang H J. Contrast-based image attention anal- ysis by using fuzzy growing. In: Proceedings of the llth ACM International Confbrence on Nultimedia. Berkeley, USA: ACM, 2003. 374-381.
  • 6Achanta R, Estrada F, Wils P, Siisstrunk S. Salient region detection and segmentation. Ill: Proceedings of the 6th In- ternational Conference on Computer Vision Systems. San- torini, Greece: Springer, 2008. 66-75.
  • 7Rahtu E, Kannala J. Salo M, Heikkili J. Segmenting salient objects from images and videos. In: Proceedings of the llth European Conference on Computer Vision. Heraklion, Greece: Springer, 2010. 366-379.
  • 8Hou X D, Zhang L Q. Saliency detection: a spectral residual approach. In: Proceedings of the 2007 IEEE International Conference on Computer Vision and Pattern Recognition. Minneapoils, USA: IEEE, 2007. 1-8.
  • 9Achanta R, Hemami S, Estrada F, Siisstrunk S. Frequency- tuned salient region detection. In: Proceedings of the 2009 IEEE International Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009. 1597-1604.
  • 10Cheng M M, Zhang G X, Mitra N J, Huang X, Hu S M. Global contrast based salient region detection. In: Proceed- ings of the 2011 IEEE International Conference on Com- puter Vision and Pattern Recognition. Providence, USA: IEEE, 2011. 409-416.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部