期刊文献+

改进线性外推法预估器的手势跟踪 被引量:2

Gesture Tracking Using Improved Linear Extrapolation Predictor
下载PDF
导出
摘要 针对动态手势识别系统手势跟踪问题,提出了一种基于改进线性外推法预估器的手势跟踪算法.该算法用前两帧的平均位移作为未来帧的位移预测,提高了预测精度;采用5点直线拟合,根据拟合直线斜率判断目标遮挡和重叠状态下的运动方向,克服了由于手势目标质心变化引起的预测位置偏离实际目标的缺陷.实验结果表明:所提出的算法能准确稳定地跟踪手势目标,平均预测偏差缩小到3.374像素,并且能在手势被遮挡和手势重叠的情况下实现有效跟踪. To improve accuracy of gesture tracking in dynamic gesture recognition system,a gesture tracking algorithm using an improved linear extrapolation predictor is proposed.Specifically,to improve prediction accuracy,the algorithm uses the average displacement of two previous frames as the future-frame predictor.Besides,to deal with occlusion and hands-overlap,the target movement direction is determined based on the slope of fitting line with five points.Thus deviation between the predicted and actual positions caused by the changing gesture centroid is reduced.Experimental results show that efficiency of the proposed gesture tracking method with the average prediction deviation is reduced to 3.374 pixels.In addition,even in the case of occlusion and hands-overlap,the gesture target can also be tracked effectively.
出处 《应用科学学报》 CAS CSCD 北大核心 2017年第1期81-89,共9页 Journal of Applied Sciences
基金 国家自然科学基金(No.61303203) 沪江基金(No.B14002/D14002)资助
关键词 动态手势识别系统 手势跟踪 线性外推 手势遮挡重叠 dynamic gesture recognition system gesture tracking linear extrapolation gesture occlusion and overlap
  • 相关文献

参考文献6

二级参考文献74

  • 1闫钧华,陈少华,艾淑芳,李大雷,段贺.基于Kalman预测器的改进的CAMShift目标跟踪[J].中国惯性技术学报,2014,12(4):536-542. 被引量:29
  • 2徐剑,段哲民.卡尔曼预测器在目标相关跟踪中的应用[J].计算机仿真,2005,22(11):120-122. 被引量:13
  • 3刁联旺,杨静宇.一种改进的机动目标“当前”统计模型的描述[J].兵工学报,2005,26(6):825-828. 被引量:23
  • 4李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 5GREIFFENHAGEN M, RAMESH V, COMANICIU D, et al.. Statistical modeling and performance charac- terization of a real-time dual camera surveillance system [J]. IEEE International Conference on Computer Vi- sion and Pattern Recognition, 2000(2) :2335-2342.
  • 6MENSER B,BRUNIG M. Face detection and track- ing for video coding applications [C]. In Asilomar Conference on Signals, Systems, and Computers. USA : IEEE Press, 2000,1 : 49-53.
  • 7GORDON N, SAI.MOND D, SMITH A. Novel approach to nonlinear/non gaussian baysian state estimation [J]. IEE Proceedings on Radar and Signal Processing, 1993, 140(2):107-113.
  • 8LIU J S, CHEN R, Sequential Monte Carlo meth- ods for dynamical systems [J]. J. of the American Statistical Association, 1998,93(5) :1032-1044.
  • 9ISARD M, BLAKE A. CONDENSATION-Condi- tional density propagation for visual tracking [J]. Int. J. Comput. Vis. ,1998,29(1):5-28.
  • 10SANJEEV ARULAMPALAM M, MASKELL S, GORDON N, et al.. A tutorial on particle filters for online nonlinear/non gaussian bayesial tracking [J]. IEEE Trans. On Signal Proc. , 2002, 50 (2):174-188.

共引文献242

同被引文献7

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部