期刊文献+

基于支持向量机的超超临界锅炉受热面污染监测模型研究 被引量:1

Research on Fouling Monitoring Model for Heating Surface of Ultra-supercritical Boiler Based on the Support Vector Machine
下载PDF
导出
摘要 通过某发电集团科技(创新基金)项目"超超临界锅炉吹灰优化试验研究",利用电厂已有的DCS采集系统,得到实时数据样本,采用ε-支持向量机回归机(ε-SVR)来进行模型学习预测,结果表明基于支持向量机的预测模型的均方误差很小,能够准确快速得跟踪实际过程,取得了很好的预测效果。 Through the study of "Experiments on Soot-blowing Effect of uhra-supercritical Boiler" from a science (innovative funding)project in a electricity generation group, a novel method was presented in the following part. To begin with, the real-time data sample was gathered by the DCS data acquisition system from the power plant. Furthermore, the ε-support vector regression ( ε -SVR)was used to build the learning and prediction model. Eventually, the consequence confirms that the predictive model based on the support vector machine could achieve a minimal mean square error, which means this approach will perform well in actual process tracking and forecast results.
作者 周保中
出处 《发电与空调》 2016年第6期36-38,35,共4页
关键词 支持向量机 锅炉 污染监测 support vector machine (SVM) boiler fouling monitoring
  • 相关文献

参考文献5

二级参考文献22

  • 1陈宝康,阎维平,高正阳,朱予东.300MW燃煤电站锅炉受热面优化吹灰模型的研究与实现[J].动力工程,2004,24(4):485-489. 被引量:25
  • 2蓝晓村,高正平,徐治皋.基于烟气差压的回转式空预器积灰实时监测研究[J].机电信息,2004(19):4-5. 被引量:8
  • 3吴观辉,向文国.基于神经网络的锅炉对流受热面灰污监测研究[J].锅炉技术,2005,36(2):18-21. 被引量:10
  • 4[1]岑可法,樊建人,池作和,等.锅炉和热交换器的积灰结渣、磨蚀和腐蚀的防止原理与计算[M].北京:科学出版社.
  • 5[2]THOMPSON S,LI N.Boiler Sootblowing Optimization for Power Generation Plant[J].IEE Conf Control 91,Edinburgh,U K,1991:1277-1282.
  • 6[6]Teruel,Enrique,Cortés,Crist6bal,Ignacio Díez,etc.Monitoring and prediction of fouling in coal-fired utility boilers using neural networks Chemical Engineering[J].Science,2005,609 (18):5035-5048.
  • 7Abhijit S 徐勇等(译).神经网络模式识别及其实现[M].北京:电子工业出版社,1999.115-118.
  • 8Funihashi, K. On the approximate realization of continuous mappings by neural networks[J]. Neural Networks, 1989, (2):183-192.
  • 9Wasserman, P. D. Neural computing-theory and practice[M]. Van Nostrand Reinhold, New York,1989.
  • 10Mckeown, J. J,Meegan. D, et al. An introduction to unsustained optimization[M]. Adam Hilger, 1990.

共引文献49

同被引文献11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部