期刊文献+

基于FRAP的微间隙润滑油膜流速测量方法 被引量:5

Velocity profile measurement of oil films in a confined gap based on FRAP
下载PDF
导出
摘要 薄油膜润滑广泛存在于各类精密机械与微机电系统中。微纳米间隙内的润滑油流动是影响薄膜润滑承载力的重要因素,但目前薄润滑油膜的流速测量仍然缺少有效手段。本文基于荧光漂白恢复显微技术和漂白区域形状演化过程的成像分析,建立了油膜流速测量系统,可以对微米间隙润滑油膜的速度分布进行原位测量。利用建立的系统获得了厚度为8μm时聚丁烯PB450润滑油膜的库埃特流速分布。重建的荧光漂白强度分布曲线和实验测量结果的皮尔森相关系数大于0.95,且流速分布符合已有润滑理论,证明了测量结果的可靠性。 The flow of lubricant oil films in confined gaps of micro-scale is a significant factor to affect load-carrying capacity of lubrication films in precision machines and micro-electro-mechanical systems (MEMS).In order to research the lubricating property of thin lubricant film the paper established through-thickness velocity profile measurement system and carried out a on-line situ measurement on through-thickness velocity profile of thin oil film under confined micro-gaps,based on fluorescence recovery after photobleaching (FRAP) and imaging analysis of shape changes process in the bleached area.The method adopted an assumption that the fluorescence intensity is distributed and layered along the film thickness direction,combined two-dimensional bleaching ability distribution information varying with time to acquire velocity distribution of the film thickness direction and the velocity profile of a 8 μm thickness of PB450 polybutene lubricant film.Pearson correlation coefficient of the experiment result and reconstructed fluorescent agent intensity distribution curve is greater than 0.95 and the velocity profile conforms to existing lubrication theory,which proves the reliability of the measuring results.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2017年第1期141-147,共7页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.51275252 No.51605239) 山东省优秀中青年科学家科研奖励基金资助项目(No.BS2014ZZ004)
关键词 荧光漂白恢复 微间隙 润滑油膜 流速 库埃特流 fluorescence recovery after photobleaching (FRAP) micro-gaps lubricant oil film flow velocity measurement Couette flow
  • 相关文献

参考文献5

二级参考文献52

  • 1薛巍,姜雯,苏荣国.微流控芯片检测技术进展[J].化学分析计量,2007,16(3):77-79. 被引量:5
  • 2田军,徐锦芬,薛群基.低表面能涂层的减阻试验研究[J].水动力学研究与进展(A辑),1997,12(1):27-32. 被引量:30
  • 3ZHANG CH S,XU J L,MAW L,et al.PCR microfluidic devices for DNA amplification[J].Biotech nology Advances,2006,24 (3) : 243-284.
  • 4HEID C A,STEVENS J,LIVAK K J,et al.Real time quantitative PCR[J].Genome Research,1996,6(10):986-994.
  • 5AHMAD F,SEYRIG G,TOURLOUSSE D M,et al.A CCD-based fluorescence imaging system for real-time loop-mediated isothermal amplificationbased rapid and sensitive detection of waterborne pathogens on microchips[J].Biomed Microdevices,2011,13(5):929-937.
  • 6LI Y Y,ZHANG CH S,XING D.Integrated microfluidic reverse transcription-polymerase chain reaction for rapid detection of food-or waterborne pathogenic rotavirus[J].Anal.Biochem,2011,415(2):87-96.
  • 7PIERIK A,BOAMFA M,ZELST M V,et al.Real time quantitative amplification detection on a microarray:towards high multiplex quantitative PCR[J].Lab Chip,2012,12(10):1897-1902.
  • 8许金钩,王本尊.荧光分析法[M].第三版.北京:科学出版社,2007.
  • 9BUSTIN S A,BENES V,GARSON J A,et al.The MIQE guidelines:minimum information for publication of quantitative real-time PCR experiments[J].Clin Chem,2009,55(4):611-622.
  • 10WANG Y.Universal reference dye for quantitative amplification US: US,2012/0164690 A1[P].2012-01-28.

共引文献76

同被引文献41

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部