期刊文献+

三维点云模型中特征点描述子及其匹配算法研究 被引量:8

Study on Descriptor and Matching Algorithm of Feature Point in 3D Point Cloud
下载PDF
导出
摘要 特征点的描述在三维物体识别中具有非常重要的意义,针对一般描述子维数过大导致特征点匹配所需的时间、空间消耗过大等问题,提出一种协方差描述子,通过计算特征点邻域的几何特征的协方差矩阵来描述特征点,并将该描述子应用到特征点匹配中.实验结果表明,此描述子不仅能大大减少匹配时间,同时对刚性变换、噪声、采样密度的变化也具有鲁棒性.最后,本文还利用典型相关分析对误匹配点对进行了剔除,获得了良好的特征点匹配效果. The description of feature points is of great significance in the recognition of 3D objects. For general descriptor, the dimension is so large to cause extreme consumption of time and space on feature point matching, so a covariance descriptor by calculating the covariance matrix of the geometric feature of feature points with their neighborhood points in this paper, and the covariance descriptor is used in the matching of feature points. Experimental results show that this descriptor not only greatly reduces the matching time,but also is robust for rigid transformation, noise and variation of sampling density. Finally,the wrong matching pairwise points are eliminated by the canonical correlation analysis and a good matching effect of feature points is obtained.
出处 《小型微型计算机系统》 CSCD 北大核心 2017年第3期640-644,共5页 Journal of Chinese Computer Systems
基金 山西省自然科学基金项目(2014011018-3)资助
关键词 特征点 几何特征 协方差描述子 特征匹配 典型相关分析 feature point geometric features covariance descriptor feature matching canonical correlation analysis
  • 相关文献

参考文献2

二级参考文献15

  • 1LIU Z, QIAO H, YANG X, et al.Graph matching by simplified convex-concave relaxation procedure[J]. International Journal of Computer Vision, 2014, 109(3): 1-18.
  • 2FENG W, LIU Z, WAN L, et al.A spectral-multiplicity-tolerant approach to robust graph matching[J]. Pattern Recognition, 2013, 46(10): 2819-2829.
  • 3KANG U, HEBERT M, PARK S. Fast and scalable approximate spectral graph matching for correspondence problems[J]. Information Sciences, 2013, 220(20): 306-318.
  • 4WANG H, HANCOCK E R. A kernel view of spectral point pattern matching[J]. Structural, Syntactic, and Statistical Pattern Recognition, 2004, 3138: 361-369.
  • 5LOWE D G. Distinctive image features from scale-invariant key-points[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 6BAY H, ESS A, TUYTELAARS T, et al.Speeded-Up Robust Features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.
  • 7TEKE M, VURAL M F, TEMIZEL A, et al.High-resolution multispectral satellite image matching using scale invariant feature transform and speeded up robust features[J]. Journal of Applied Remote Sensing, 2011, 5(1): 53553.
  • 8YANG L, TIAN Z, ZHAO W. A new affine invariant feature extraction method for SAR image registration[J]. International Journal of Remote Sensing, 2014, 35(20): 7219-7229.
  • 9FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.
  • 10KIM T, IM Y. Automatic satellite image registration by combination of matching and random sample consensus[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(5): 1111-1117.

共引文献11

同被引文献52

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部