期刊文献+

核空间广义均衡模糊C-均值聚类算法 被引量:1

Improvement of general equalization fuzzy C-means clustering and its kernel spaces algorithm
原文传递
导出
摘要 目的针对现有广义均衡模糊C-均值聚类不收敛问题,提出一种改进广义均衡模糊聚类新算法,并将其推广至再生希尔伯特核空间以便提高该类算法的普适性。方法在现有广义均衡模糊C-均值聚类目标函数的基础上,利用Schweizer T范数极限表达式的性质构造了新的广义均衡模糊C-均值聚类最优化目标函数,然后采用拉格朗日乘子法获取其迭代求解所对应的隶属度和聚类中心表达式,同时对其聚类中心迭代表达式进行修改并得到一类聚类性能显著改善的修正聚类算法;最后利用非线性函数将数据样本映射至高维特征空间获得核空间广义均衡模糊聚类算法。结果对Iris标准文本数据聚类和灰度图像分割测试表明,提出的改进广义均衡模模糊聚类新算法及其修正算法具有良好的分类性能,核空间广义均衡模糊聚类算法对比现有融入类间距离的改进模糊C-均值聚类(FCS)算法和改进再生核空间的模糊局部C-均值聚类(KFLICM)算法能将图像分割的误分率降低10%30%。结论本文算法克服了现有广义均衡模糊C-均值聚类算法的缺陷,同时改善了聚类性能,适合复杂数据聚类分析的需要。 Objective A new general equalization fuzzy C-means clustering algorithm that targets the shortcomings of existing, non-convergent types is proposed and applied in image segmentation. The proposed general equalization fuzzy clustering algorithm is also extended into the Hilbert reproduced kernel space. This approach can improve the universality of this algorithm class. Method The limit expression properties of the Schweizer T-norm are applied to construct the objective function of the new general equalization fuzzy C-means clustering based on the objective function of existing types. The Lagrange muhiplier method is then adopted to obtain iterated formulae of the fuzzy membership and clustering center for the modified general equalization fuzzy C-means clustering. The iterafive expression of the clustering center is modified to further improve the performance of the clustering algorithm. The modified clustering algorithm significantly improves a clustering performance class. Finally, a nonlinear function is adopted to map data samples from the Euclidean space to the high-dimensional feature space of Hilbert. The kernel space general equalization fuzzy C-means clustering algorithm is thus ob- tained. The kernel spaces general equalization fuzzy C-means clustering algorithms can improve the error classification rate of image segmentation by 10% to 30% compared with existing fuzzy compactness and separation (FCS) and fuzzy C-means clustering with local information and kernel metric (KFLICM) algorithms. Result Experimental results of the clustering analysis of Iris data and gray image segmentation indicate that the proposed general equalization fuzzy C-means clustering algorithm is efficient. Its modified algorithm can obtain more satisfactory clustering quality and segmentation effects than existing fuzzy c-means clustering algorithms. Conehtsion The proposed algorithm overcomes the shortcomings of existing general equaliza- tion fuzzy C-means clustering algorithms and improves the clustering performance, which is suitable for complex data analysis.
出处 《中国图象图形学报》 CSCD 北大核心 2017年第2期188-196,共9页 Journal of Image and Graphics
基金 国家自然科学基金重点项目(61136002) 陕西省教育厅科学研究计划资助项目(2015JK1654) 陕西省自然科学基金项目(2014JM8331 2014JQ5138 2014JM8307) 研究生创新基金项目(CXL2015-03)~~
关键词 广义均衡模糊C-均值聚类 核空间 Schweizer T范数 图像分割 误分率 聚类性能 general equalization fuzzy C-means clustering kernel spaces Sehweizer T-norm image segmentation error classification rate clustering performance
  • 相关文献

参考文献4

二级参考文献27

  • 1侯健,尤飞,李洪兴.由三I算法构造的一些模糊控制器及其响应能力[J].自然科学进展,2005,15(1):29-37. 被引量:30
  • 2彭家寅,侯健,李洪兴.基于某些常见蕴涵算子的反向三I算法[J].自然科学进展,2005,15(4):404-410. 被引量:49
  • 3诸克军,苏顺华,黎金玲.模糊C-均值中的最优聚类与最佳聚类数[J].系统工程理论与实践,2005,25(3):52-61. 被引量:69
  • 4李洪兴.Fuzzy系统的概率表示[J].中国科学(E辑),2006,36(4):373-397. 被引量:33
  • 5刘健庄,1990年
  • 6Jain A K, Murty M N, Flynn P J. Data clustering: A review[J]. ACM Computing Surveys, 1999, 31(3): 264 -323.
  • 7Xu R, Wunsch D. Survey of clustering algorithms[J]. IEEE Transactions on Neural Networks, 2005, 16(3): 645 -678.
  • 8MacQueen J. Some methods for classification and analysis of multivariate observations[C]// 5th Berkeley Sym- posium on Mathematical Statistics and Probability, Berkeley, 1967:281 -297.
  • 9Bezdek J C, Hathaway R J, Sobin M, et al. Convergence and theory for fuzzy c-means clustering: Counterex- amples and repairs[J]. IEEE Transactions on Systems, Man and Cybernetics, 1987, 17(5): 873-877.
  • 10Hoppner F, Klawonn F. Improved fuzzy partitions for fuzzy regression models[J]. International Journal of Approximate Reasoning, 2003, 32(2): 85-102.

共引文献90

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部