摘要
针对线性光谱混合分解在端元选取中的不足,该文提出了结合影像分割的线性光谱混合分解不透水面估算模型。选取植被、高反射率、低反射率、土壤4种端元,利用线性光谱混合分解和结合影像分割的线性光谱混合分解两种模型,以2010年的TM5遥感影像为数据源对哈尔滨市主城区的不透水面进行估算,并对两种模型进行了对比分析。研究结果表明:线性光谱混合分解和结合影像分割的线性光谱混合分解的平均绝对误差分别为19.84%和14.76%,说明结合影像分割的线性光谱混合分解模型比线性光谱混合分解方法的估算精度高。
To solve the problem of selecting endmember of traditional linear spectral mixture analysis (LSMA), the segment-based linear spectral mixture analysis(S-LSMA)was proposed. Vegetation, high albedo, low albedo, soil were selected as endmember. Both S-LSMA and LSMA were applied to a Landsat TM image acquired in Harbin. According to the contrast and analysis results, it was indicated that the performance of the developed S-LSMA outperformed traditional LSMA techniques with a mean average error( MAE) of 14. 76 %. The MAE of % ISA was 19.84% with LSMA, which showed a relatively large estimation error.
出处
《测绘科学》
CSCD
北大核心
2017年第2期84-87,99,共5页
Science of Surveying and Mapping
基金
国家自然科学基金项目(41171322)
黑龙江省自然基金项目(ZD201308
D201407)
哈尔滨师范大学博士创新基金项目(HSDBSCX2014-02)