期刊文献+

归一化转动惯量特征的遥感影像检索 被引量:2

Remote sensing image retrieval based on normalized moment inertia characteristic
原文传递
导出
摘要 针对传统遥感影像检索方法大多存在精度不高、效率低下等不足的问题,该文提出了一种基于归一化转动惯性特征的遥感影像检索算法。该算法对经过脉冲耦合神经网络处理的二值影像序列进行计算,提取影像序列的归一化转动惯量特征;同时,利用马氏距离结合Pearson积矩相关法来度量各特征矢量之间的相似性,提高检索结果的正确率。实验结果证明,该算法有效地兼顾了影像的内容结构信息,不仅可以快速地进行检索计算,还能提高检索精度。 Aiming at the low accuracy and poor efficiency of traditional remote sensing image retrieval methods, this paper proposed a remote sensing image retrieval method based on normalized moment inertia characteristics. The binary image sequence, which was obtained by pulse-coupled neural networks, was calculated to extract normalized moment inertia characteristics; meanwhile, the Mahalanobis distance and the Pearson product-moment correlation method were combined to measure the similarity between the feature vectors to improve the accuracy of retrieval results. Experimental results showed that this method effectively considered the image structural informa- tion, which could quickly and efficiently provide accurate retrieval results.
出处 《测绘科学》 CSCD 北大核心 2017年第2期115-119,134,共6页 Science of Surveying and Mapping
基金 长江科学院开放研究基金项目(CKWV2012325/KY) 国家自然科学基金项目(61201341 41371344) 干旱气象科学研究基金项目(IAM201512) 农业部农业信息技术重点实验室开放基金项目(2013004) 数字制图与国土信息应用工程国家测绘地理信息局重点实验室开放研究基金项目(GCWD201407)
关键词 影像检索 脉冲耦合神经网络 归一化转动惯量特征 image retrieval pulse-coupled neural networks(PCNN) normalized moment of inertia(NMI)
  • 相关文献

参考文献4

二级参考文献25

  • 1周焰,李德仁,徐长勇.基于形状的遥感图像检索系统[J].华中科技大学学报(自然科学版),2003,31(3):14-16. 被引量:8
  • 2Arnold W M, Marcel W, Simone S, et al. Content-Based Image Retrieval at the End of the Early Years[J]. IEEE Transactions On Pattern Analysis And Machine Intelligence, 2000,22(12):1349-1380.
  • 3Asha V, Kuo C, Son D. Content-Based Retrieval of Color and Multispectral Images Using Joint Spatial-Spectral Indexing[J]. http://www.citeseer.nj.nec.com
  • 4Asha V, Jay K, Son D. Content-Based Retrieval of Remote Sensed Images Using Vector Quantization[J]. http://www.citeseer.nj.nec.com
  • 5Datcu M, Seidel K. Query by image content and information mining[J]. IEEE Geoscience and Remote Sensing Symposium, 1999(2):1335-1337.
  • 6Marchisio G B, Li W H, Sannella M, et al. Geo-Browse: an integrated environment for satellite image retrieval and mining[J]. IEEE Geoscience and Remote Sensing Symposium, 1998(2):669-673.
  • 7Kruse F A, Lefkoff A B. Analysis of Spectral Data of Manmade Materials, Military Targets, and Background Using an Expert System Based Approach[J]. http://www.citeseer.nj.nec.com
  • 8张永生.遥感图像信息系统[M].北京:科学出版社,2000..
  • 9Charles E J,Adam F,David H S. Fast Multiresolution Image Querying. Proc. SIGGAPH' 95, Los Angeles,1995
  • 10Mallat S, Hwang W L. Singularity Detection and Processing with Wavelet, IEEE IT, 1992,38 (2): 617 -643

共引文献11

同被引文献31

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部