期刊文献+

掺铒聚合物狭缝波导放大器的增益特性研究(英文) 被引量:1

Simulation of Gain Properties for Slot Waveguide Amplifiers Based on Erbium-doped Polymers
下载PDF
导出
摘要 设计了一种高浓度稀土铒掺杂聚合物填充硅狭缝结构的平面光波导放大器(工作波长1 550 nm,泵浦波长1 480 nm),能够在低泵浦下获得高增益,可以应用于硅基光互联的损耗补偿。通过扫描电镜照片观察发现,合成的铒掺杂聚合物材料具有良好的纳米狭缝填充能力。考虑铒离子的合作上转换和激发态吸收,利用铒离子四能级跃迁模型,建立原子速率方程和光功率传输方程,数值仿真分析了聚合物光学性质、狭缝波导结构参数及信号光泵浦光功率等放大器增益特性的影响因素。这种具有纳米截面尺寸的光波导放大器,获得4.5 d B的信号光相对增益仅需要1.5 m W的泵浦光,展现了良好的集成光学应用前景。为了进一步提高增益,引入了多层狭缝结构,四层狭缝波导的重叠积分因子比一层狭缝的高42%。 A slot waveguide amplifier based on high concentration erbium-doped polymers,working at 1 550 nm wavelength under 1 480 nm pumping,is presented to realize high optical gains with low pump powers for the loss compensation in the silicon-based optical interconnection. The influence factors of the gain properties,such as the optical properties of the polymers,the structure sizes of the slot waveguides,and the signal and pump powers,are numerically simulated. This structure,with the nanometer scale,only needs a 1. 5 mW pump to obtain a 4. 5 dB gain,which exhibits promising applications in integrated optical systems. Further,multiple-layer slot structures are introduced to get higher gains,and the over-lapping integral factor of the four-layer slot waveguides is 42% larger than that of the one-layer waveguides.
出处 《发光学报》 EI CAS CSCD 北大核心 2017年第2期213-219,共7页 Chinese Journal of Luminescence
基金 国家自然科学基金(11274247,11574218,11504243,61475061) 广东省自然科学基金(2016A030313042,2015A030310400)资助项目
关键词 波导放大器 狭缝波导 光电子器件 waveguide amplifier slot waveguide optoelectronic device
  • 相关文献

参考文献1

二级参考文献37

  • 1T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, Appl. Phys. Lett. 73, 1673 (1998).
  • 2T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, Appl. Phys. A 70, 383 (2000).
  • 3M. Hong, G. D. Yuan, Y. Peng, H. Y. Chen, Y. Zhang, Z. Q. Liu, J. X. Wang, B. Cai, Y. M. Zhu, Y. Chen, J. H. Liu, and J. M. Li, Appl. Phys. Lett. 104, 253902 (2014).
  • 4J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, Light Sci. Appl. 3, e185 (2014).
  • 5Z. Fekete, A. C. Horvath, Z. Berces, and A. Pongracz, Sens. Actuat A 216, 277 (2014).
  • 6K. Uetsuki, P. Verma, T. Yano, Y. Saito, T. Ichimura, and S. Kawata, J. Phys. Chem. C 114, 7515 (2010).
  • 7Y. Chen, G. G. Kang, A. Shah, V. Pale, Y. Tian, Z. Sun, I. Tittonen, S. Honkanen, and H. Lipsanen, Adv. Mater. Inter. 1, 1300008 (2014).
  • 8Y. Huang, Y. Fang, Z. Zhang, L. Zhu, and M. Sun, Light Sci. Appl. 3, e199 (2014).
  • 9M. S. Schmidt, J. Hubner, and A. Boisen, Adv. Mater. 24, OP11 (2012).
  • 10H. Mao, W. Wu, D. She, G. Sun, P. Lv, and J. Xu, Small 10, 127 (2014).

共引文献1

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部